Authors

B. P. Abbott, California Institute of TechnologyFollow
R. Abbott, California Institute of TechnologyFollow
T. D. Abbott, Louisiana State UniversityFollow
F. Acernese, Università degli Studi di SalernoFollow
K. Ackley, University of FloridaFollow
C. Adams, LIGO LivingstonFollow
T. Adams, Université Savoie Mont BlancFollow
P. Addesso, Università degli Studi del SannioFollow
R. X. Adhikari, California Institute of TechnologyFollow
V. B. Adya, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)Follow
C. Affeldt, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)Follow
M. Afrough, University of Mississippi
B. Agarwal, University of Illinois Urbana-ChampaignFollow
M. Agathos, University of CambridgeFollow
K. Agatsuma, FOM-Institute of Subatomic Physics - NIKHEFFollow
N. Aggarwal, LIGO, Massachusetts Institute of TechnologyFollow
O. D. Aguiar, Instituto Nacional de Pesquisas EspaciaisFollow
L. Aiello, Gran Sasso Science InstituteFollow
A. Ain, Inter-University Centre for Astronomy and Astrophysics IndiaFollow
P. Ajith, Tata Institute of Fundamental Research, MumbaiFollow
B. Allen, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)Follow
G. Allen, University of Illinois Urbana-ChampaignFollow
A. Allocca, Università di PisaFollow
P. A. Altin, The Australian National UniversityFollow
A. Amato, IN2P3 Institut National de Physique Nucleaire et de Physique des ParticulesFollow
A. Ananyeva, California Institute of TechnologyFollow
S. B. Anderson, California Institute of TechnologyFollow
W. G. Anderson, University of Wisconsin-MilwaukeeFollow
S. V. Angelova, University of the West of Scotland
S. Antier, Laboratoire de l'Accélérateur Linéaire
S. Appert, California Institute of Technology
K. Arai, California Institute of Technology
M. C. Araya, California Institute of Technology

Document Type

Article

Publication Date

12-1-2017

Abstract

The source of the gravitational-wave (GW) signal GW170817, very likely a binary neutron star merger, was also observed electromagnetically, providing the first multi-messenger observations of this type. The two-week-long electromagnetic (EM) counterpart had a signature indicative of an r-process-induced optical transient known as a kilonova. This Letter examines how the mass of the dynamical ejecta can be estimated without a direct electromagnetic observation of the kilonova, using GW measurements and a phenomenological model calibrated to numerical simulations of mergers with dynamical ejecta. Specifically, we apply the model to the binary masses inferred from the GW measurements, and use the resulting mass of the dynamical ejecta to estimate its contribution (without the effects of wind ejecta) to the corresponding kilonova light curves from various models. The distributions of dynamical ejecta mass range between Mej = 10-3 - 10-2 M⊙ for various equations of state, assuming that the neutron stars are rotating slowly. In addition, we use our estimates of the dynamical ejecta mass and the neutron star merger rates inferred from GW170817 to constrain the contribution of events like this to the r-process element abundance in the Galaxy when ejecta mass from post-merger winds is neglected. We find that if ≳10% of the matter dynamically ejected from binary neutron star (BNS) mergers is converted to r-process elements, GW170817-like BNS mergers could fully account for the amount of r-process material observed in the Milky Way.

Publication Source (Journal or Book title)

Astrophysical Journal Letters

Share

COinS