Document Type
Article
Publication Date
12-20-2017
Abstract
On 2017 June 8 at 02:01:16.49 UTC, a gravitational-wave (GW) signal from the merger of two stellar-mass blackholes was observed by the two Advanced Laser Interferometer Gravitational-Wave Observatory detectors with anetwork signal-to-noise ratio of 13. This system is the lightest black hole binary so far observed, with componentmasses of 12+7-2M⊙7+2-2 (90% credible intervals). These lie in the range of measured black hole masses inlow-mass X-ray binaries, thus allowing us to compare black holes detected through GWs with electromagneticobservations. The source's luminosity distance is 340+140-140corresponding to redshift -0.07+0.03003. We verify thatthe signal waveform is consistent with the predictions of general relativity.
Publication Source (Journal or Book title)
Astrophysical Journal Letters
Recommended Citation
Abbott, B., Abbott, R., Abbott, T., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R., Adya, V., Affeldt, C., Afrough, M., Agarwal, B., Agathos, M., Agatsuma, K., Aggarwal, N., Aguiar, O., Aiello, L., Ain, A., Ajith, P., Allen, B., Allen, G., Allocca, A., Altin, P., Amato, A., Ananyeva, A., Anderson, S., Anderson, W., Angelova, S., Antier, S., Appert, S., Arai, K., & Araya, M. (2017). GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 851 (2) https://doi.org/10.3847/2041-8213/aa9f0c