Authors

B. P. Abbott, California Institute of TechnologyFollow
R. Abbott, California Institute of TechnologyFollow
T. D. Abbott, Louisiana State UniversityFollow
F. Acernese, Università degli Studi di SalernoFollow
K. Ackley, University of FloridaFollow
C. Adams, LIGO LivingstonFollow
T. Adams, Université Savoie Mont BlancFollow
P. Addesso, Università degli Studi del SannioFollow
R. X. Adhikari, California Institute of TechnologyFollow
V. B. Adya, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)Follow
C. Affeldt, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)Follow
M. Afrough, University of Mississippi
B. Agarwal, University of Illinois Urbana-ChampaignFollow
M. Agathos, University of CambridgeFollow
K. Agatsuma, FOM-Institute of Subatomic Physics - NIKHEFFollow
N. Aggarwal, LIGO, Massachusetts Institute of TechnologyFollow
O. D. Aguiar, Instituto Nacional de Pesquisas EspaciaisFollow
L. Aiello, Gran Sasso Science InstituteFollow
A. Ain, Inter-University Centre for Astronomy and Astrophysics IndiaFollow
P. Ajith, Tata Institute of Fundamental Research, MumbaiFollow
B. Allen, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)Follow
G. Allen, University of Illinois Urbana-ChampaignFollow
A. Allocca, Università di PisaFollow
P. A. Altin, The Australian National UniversityFollow
A. Amato, IN2P3 Institut National de Physique Nucleaire et de Physique des ParticulesFollow
A. Ananyeva, California Institute of TechnologyFollow
S. B. Anderson, California Institute of TechnologyFollow
W. G. Anderson, University of Wisconsin-MilwaukeeFollow
S. V. Angelova, University of the West of Scotland
S. Antier, Laboratoire de l'Accélérateur Linéaire
S. Appert, California Institute of Technology
K. Arai, California Institute of Technology
M. C. Araya, California Institute of Technology

Document Type

Article

Publication Date

2-28-2018

Abstract

The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude ΩGW(f=25 Hz)=1.8-1.3+2.7×10-9 with 90% confidence, compared with ΩGW(f=25 Hz)=1.1-0.7+1.2×10-9 from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity.

Publication Source (Journal or Book title)

Physical Review Letters

Share

COinS