Authors

B. P. Abbott, California Institute of TechnologyFollow
R. Abbott, California Institute of TechnologyFollow
T. D. Abbott, Louisiana State UniversityFollow
F. Acernese, Università degli Studi di SalernoFollow
K. Ackley, University of FloridaFollow
C. Adams, LIGO LivingstonFollow
T. Adams, Université Savoie Mont BlancFollow
P. Addesso, Istituto Nazionale di Fisica Nucleare, Sezione di NapoliFollow
R. X. Adhikari, California Institute of TechnologyFollow
V. B. Adya, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)Follow
C. Affeldt, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)Follow
M. Afrough, University of Mississippi
B. Agarwal, University of Illinois Urbana-ChampaignFollow
M. Agathos, University of CambridgeFollow
K. Agatsuma, FOM-Institute of Subatomic Physics - NIKHEFFollow
N. Aggarwal, LIGO, Massachusetts Institute of TechnologyFollow
O. D. Aguiar, Instituto Nacional de Pesquisas EspaciaisFollow
L. Aiello, Gran Sasso Science InstituteFollow
A. Ain, Inter-University Centre for Astronomy and Astrophysics IndiaFollow
P. Ajith, Tata Institute of Fundamental Research, MumbaiFollow
B. Allen, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)Follow
G. Allen, University of Illinois Urbana-ChampaignFollow
A. Allocca, Università di PisaFollow
P. A. Altin, The Australian National UniversityFollow
A. Amato, IN2P3 Institut National de Physique Nucleaire et de Physique des ParticulesFollow
A. Ananyeva, California Institute of TechnologyFollow
S. B. Anderson, California Institute of TechnologyFollow
W. G. Anderson, University of Wisconsin-MilwaukeeFollow
S. V. Angelova, University of the West of Scotland
S. Antier, Laboratoire de l'Accélérateur Linéaire
S. Appert, California Institute of Technology
K. Arai, California Institute of Technology
M. C. Araya, California Institute of Technology

Document Type

Article

Publication Date

5-16-2018

Abstract

The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz.

Publication Source (Journal or Book title)

Physical Review Letters

Share

COinS