Antioxidant capacity differences between the major flavonoids in cherry (Prunus pseudocerasus) in vitro and in vivo models

Document Type

Article

Publication Date

4-1-2021

Abstract

The antioxidant capacities of cherry (Prunus pseudocerasus) flavonoids, astragalin cyanidin-3-O-glucoside, cynaroside, quercetin, rutin, and vitexin were evaluated using in vitro assays and in vivo model. With in vitro assays, cyanidin-3-O-glucoside, cynaroside, or rutin showed higher activity in scavenging DPPH (2,2-diphenyl-1-picrylhydrazyl), superoxide, and hydroxyl free radicals and reducing power than astragalin, quercetin or vitexin. In in vivo model, high dose treatments of cyanidin-3-O-glucoside and rutin increased SOD (superoxide dismutase) activities in mouse serum, liver, kidney and heart. These treated mice also had higher GSH-Px (glutathione peroxidase) activity in serum and liver. Astragalin and vitexin treatments did not increase either SOD or GSH-Px activity in mice. All the flavonoids significantly reduced MDA (malondialdehyde) level in mouse serum, liver, kidney and heart. Especially, the MDA level of serum or liver in mice treated with high dose of cyanidin-3-O-glucoside, quercetin, or rutin was lower than vitamin C treatment. Based on chemical structures of the flavonoids, the flavonoid with two hydroxyl groups on phenyl ring B had higher antioxidant capacity than the flavonoid only having one hydroxyl group on the ring. Therefore, the antioxidant capacity of flavonoid may be correlated with the number of hydroxyl groups on ring B in its structure.

Publication Source (Journal or Book title)

LWT

This document is currently not available here.

Share

COinS