An in vitro biomechanical comparison of equine proximal interphalangeal joint arthrodesis techniques: an axial positioned dynamic compression plate and two abaxial transarticular cortical screws inserted in lag fashion versus three parallel transarticular cortical screws inserted in lag fashion
Document Type
Article
Publication Date
1-1-2010
Abstract
OBJECTIVES: To compare in vitro monotonic biomechanical properties of an axial 3-hole, 4.5 mm narrow dynamic compression plate (DCP) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion (DCP-TLS) with 3 parallel transarticular 5.5 mm cortical screws inserted in lag fashion (3-TLS) for the equine proximal interphalangeal (PIP) joint arthrodesis. STUDY DESIGN: Paired in vitro biomechanical testing of 2 methods of stabilizing cadaveric adult equine forelimb PIP joints. SAMPLE POPULATION: Cadaveric adult equine forelimbs (n=15 pairs). METHODS: For each forelimb pair, 1 PIP joint was stabilized with an axial 3-hole narrow DCP (4.5 mm) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion and 1 with 3 parallel transarticular 5.5 mm cortical screws inserted in lag fashion. Five matching pairs of constructs were tested in single cycle to failure under axial compression, 5 construct pairs were tested for cyclic fatigue under axial compression, and 5 construct pairs were tested in single cycle to failure under torsional loading. Mean values for each fixation method were compared using a paired t-test within each group with statistical significance set at P<.05. RESULTS: Mean yield load, yield stiffness, and failure load under axial compression and torsion, single cycle to failure, of the DCP-TLS fixation were significantly greater than those of the 3-TLS fixation. Mean cycles to failure in axial compression of the DCP-TLS fixation was significantly greater than that of the 3-TLS fixation. CONCLUSION: The DCP-TLS was superior to the 3-TLS in resisting the static overload forces and in resisting cyclic fatigue. CLINICAL RELEVANCE: The results of this in vitro study may provide information to aid in the selection of a treatment modality for arthrodesis of the equine PIP joint.
Publication Source (Journal or Book title)
Veterinary surgery : VS
First Page
83
Last Page
90
Recommended Citation
Sod, G. A., Riggs, L. M., Mitchell, C. F., Hubert, J. D., & Martin, G. S. (2010). An in vitro biomechanical comparison of equine proximal interphalangeal joint arthrodesis techniques: an axial positioned dynamic compression plate and two abaxial transarticular cortical screws inserted in lag fashion versus three parallel transarticular cortical screws inserted in lag fashion. Veterinary surgery : VS, 39 (1), 83-90. https://doi.org/10.1111/j.1532-950X.2009.00615.x