Methodology optimization for quantification of total phenolics and individual phenolic acids in sweetpotato (Ipomoea batatas L.) roots

Document Type

Article

Publication Date

9-1-2007

Abstract

Phenolic acids are one of the several classes of naturally occurring antioxidant compounds found in sweetpotatoes. Simplified, robust, and rapid methodologies were optimized to quantify total and individual phenolic acids in sweetpotato roots. Total phenolic acid content was quantified spectrophotometrically using both Folin-Denis and Folin-Ciocalteu reagents. The Folin-Ciocalteu reagent gave an overestimation of total phenolic acids due to the absorbance of interfering compounds (that is, reducing sugars and ascorbic acid). Individual phenolic acids were quantified by high-performance liquid chromatography (HPLC) using the latest in column technology. Four reversed-phase C18 analytical columns with different properties (dimensions, particle size, particle shape, pore size, and carbon load) were compared. Three different mobile phases using isocratic conditions were also evaluated. A column (4.6 × 150 mm) packed with 5-μm spherical silica particles of pore size 110 Å combined with 14% carbon load provided the best and fast separation of individual phenolic acids (that is, chlorogenic acid, caffeic acid, and 3 isomers of dicaffeoylquinic acid) with a total analysis time of less than 7 min. Among the 3 mobile phases tested, a mobile phase consisting of 1% (v/v) formic acid aqueous solution: acetonitrile: 2-propanol, pH 2.5 (70:22:8, v/v/v) gave adequate separation. Among the solvents tested, aqueous mixtures (80:20, solvent:water) of methanol and ethanol provided higher phenolic acid extraction efficiency than the aqueous mixture of acetone. © 2007 Institute of Food Technologists.

Publication Source (Journal or Book title)

Journal of Food Science

This document is currently not available here.

Share

COinS