Authors

R. Abbott, California Institute of TechnologyFollow
T. D. Abbott, Louisiana State UniversityFollow
S. Abraham, Inter-University Centre for Astronomy and Astrophysics IndiaFollow
F. Acernese, Università degli Studi di SalernoFollow
K. Ackley, Monash UniversityFollow
A. Adams, Christopher Newport UniversityFollow
C. Adams, LIGO LivingstonFollow
R. X. Adhikari, California Institute of TechnologyFollow
V. B. Adya, The Australian National UniversityFollow
C. Affeldt, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)Follow
D. Agarwal, Inter-University Centre for Astronomy and Astrophysics IndiaFollow
M. Agathos, University of CambridgeFollow
K. Agatsuma, University of BirminghamFollow
N. Aggarwal, Northwestern UniversityFollow
O. D. Aguiar, Instituto Nacional de Pesquisas EspaciaisFollow
L. Aiello, Cardiff UniversityFollow
A. Ain, Istituto Nazionale di Fisica Nucleare, Sezione di PisaFollow
P. Ajith, Tata Institute of Fundamental Research, MumbaiFollow
K. M. Aleman, California State University, FullertonFollow
G. Allen, University of Illinois Urbana-ChampaignFollow
A. Allocca, Istituto Nazionale di Fisica Nucleare, Sezione di NapoliFollow
P. A. Altin, The Australian National UniversityFollow
A. Amato, Université Claude Bernard Lyon 1Follow
S. Anand, California Institute of TechnologyFollow
A. Ananyeva, California Institute of TechnologyFollow
S. B. Anderson, California Institute of TechnologyFollow
W. G. Anderson, University of Wisconsin-MilwaukeeFollow
S. V. Angelova, University of Strathclyde
S. Ansoldi, Università degli Studi di Udine
J. M. Antelis, Embry-Riddle Aeronautical University, Prescott
S. Antier, Université de Paris
S. Appert, California Institute of Technology
K. Arai, California Institute of Technology

Document Type

Article

Publication Date

3-12-2021

Abstract

Rapidly spinning neutron stars are promising sources of continuous gravitational waves. Detecting such a signal would allow probing of the physical properties of matter under extreme conditions. A significant fraction of the known pulsar population belongs to binary systems. Searching for unknown neutron stars in binary systems requires specialized algorithms to address unknown orbital frequency modulations. We present a search for continuous gravitational waves emitted by neutron stars in binary systems in early data from the third observing run of the Advanced LIGO and Advanced Virgo detectors using the semicoherent, GPU-accelerated, binaryskyhough pipeline. The search analyzes the most sensitive frequency band of the LIGO detectors, 50-300 Hz. Binary orbital parameters are split into four regions, comprising orbital periods of three to 45 days and projected semimajor axes of two to 40 light seconds. No detections are reported. We estimate the sensitivity of the search using simulated continuous wave signals, achieving the most sensitive results to date across the analyzed parameter space.

Publication Source (Journal or Book title)

Physical Review D

Share

COinS