Authors

R. Abbott, California Institute of TechnologyFollow
T. D. Abbott, Louisiana State UniversityFollow
S. Abraham, Inter-University Centre for Astronomy and Astrophysics IndiaFollow
F. Acernese, Università degli Studi di SalernoFollow
K. Ackley, Monash UniversityFollow
A. Adams, Christopher Newport UniversityFollow
C. Adams, LIGO LivingstonFollow
R. X. Adhikari, California Institute of TechnologyFollow
V. B. Adya, The Australian National UniversityFollow
C. Affeldt, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)Follow
D. Agarwal, Inter-University Centre for Astronomy and Astrophysics IndiaFollow
M. Agathos, University of CambridgeFollow
K. Agatsuma, University of BirminghamFollow
N. Aggarwal, Northwestern UniversityFollow
O. D. Aguiar, Instituto Nacional de Pesquisas EspaciaisFollow
L. Aiello, Cardiff UniversityFollow
A. Ain, Istituto Nazionale di Fisica Nucleare, Sezione di PisaFollow
P. Ajith, Tata Institute of Fundamental Research, MumbaiFollow
T. Akutsu, National Institutes of Natural Sciences - National Astronomical Observatory of JapanFollow
K. M. Aleman, California State University, FullertonFollow
G. Allen, University of Illinois Urbana-ChampaignFollow
A. Allocca, Istituto Nazionale di Fisica Nucleare, Sezione di NapoliFollow
P. A. Altin, The Australian National UniversityFollow
A. Amato, Université Claude Bernard Lyon 1Follow
S. Anand, California Institute of TechnologyFollow
A. Ananyeva, California Institute of TechnologyFollow
S. B. Anderson, California Institute of TechnologyFollow
W. G. Anderson, University of Wisconsin-MilwaukeeFollow
M. Ando, National Institutes of Natural Sciences - National Astronomical Observatory of JapanFollow
S. V. Angelova, University of Strathclyde
S. Ansoldi, Università degli Studi di Udine
J. M. Antelis, Embry-Riddle Aeronautical University, Prescott
S. Antier, Université de Paris

Document Type

Article

Publication Date

6-1-2021

Abstract

We present a search for quasi-monochromatic gravitational-wave signals from the young, energetic X-ray pulsar PSR J0537-6910 using data from the second and third observing runs of LIGO and Virgo. The search is enabled by a contemporaneous timing ephemeris obtained using Neutron star Interior Composition Explorer (NICER) data. The NICER ephemeris has also been extended through 2020 October and includes three new glitches. PSR J0537-6910 has the largest spin-down luminosity of any pulsar and exhibits fRequent and strong glitches. Analyses of its long-term and interglitch braking indices provide intriguing evidence that its spin-down energy budget may include gravitational-wave emission from a time-varying mass quadrupole moment. Its 62 Hz rotation frequency also puts its possible gravitational-wave emission in the most sensitive band of the LIGO/Virgo detectors. Motivated by these considerations, we search for gravitational-wave emission at both once and twice the rotation frequency from PSR J0537-6910. We find no signal, however, and report upper limits. Assuming a rigidly rotating triaxial star, our constraints reach below the gravitational-wave spin-down limit for this star for the first time by more than a factor of 2 and limit gravitational waves from the l = m = 2 mode to account for less than 14% of the spin-down energy budget. The fiducial equatorial ellipticity is constrained to less than about 3 ×10-5, which is the third best constraint for any young pulsar.

Publication Source (Journal or Book title)

Astrophysical Journal Letters

Share

COinS