Electronic, structural, and magnetic properties of LaMnO3 phase transition at high temperature
Document Type
Article
Publication Date
1-20-2016
Abstract
We develop a procedure to determine the portion of exact Hartree-Fock exchange interaction contained in a hybrid density functional to treat the range of electronic correlation governing the physics of a system as a function of a thermodynamical parameter. This includes systems that depend on physical parameters accessible to experiment (i.e., temperature, pressure, composition, etc.) or those composed of two or more materials such as heterostructures and interfaces. This approach is applied to LaMnO3, where we are able to simulate the high temperature insulator-to-metal transition (IMT) and observe a half-metallic orbital disorder ferromagnetic state using density functional theory. In particular, we show that the softening of the Q2 Jahn-Teller mode plays a central role in driving the IMT. These findings are likely to motivate the investigation of heterostructures and bulk materials that contain a range of electronic correlation in similar material systems.
Publication Source (Journal or Book title)
Physical Review B
Recommended Citation
Rivero, P., Meunier, V., & Shelton, W. (2016). Electronic, structural, and magnetic properties of LaMnO3 phase transition at high temperature. Physical Review B, 93 (2) https://doi.org/10.1103/PhysRevB.93.024111