Authors

S. Gwon, Chung-Ang University
P. Granger, Institut de Recherche sur les Lois Fondamentales de l'Univers
G. Yang, University of California, Berkeley
S. Bolognesi, Institut de Recherche sur les Lois Fondamentales de l'Univers
T. Cai, University of Rochester
M. Danilov, P.N. Lebedev Physical Institute of the Russian Academy of Sciences
A. Delbart, Institut de Recherche sur les Lois Fondamentales de l'Univers
A. De Roeck, Organisation Européenne pour la Recherche Nucléaire
S. Dolan, Organisation Européenne pour la Recherche Nucléaire
G. Eurin, Institut de Recherche sur les Lois Fondamentales de l'Univers
R. F. Razakamiandra, Université d'Antananarivo
S. Fedotov, Institute for Nuclear Research of the Russian Academy of Sciences
G. Fiorentini Aguirre, South Dakota School of Mines & Technology
R. Flight, University of Rochester
R. Gran, University of Minnesota Duluth
C. Ha, Chung-Ang University
C. K. Jung, Stony Brook University
K. Y. Jung, Chung-Ang University
S. Kettell, Brookhaven National Laboratory
M. Khabibullin, Institute for Nuclear Research of the Russian Academy of Sciences
A. Khotjantsev, Institute for Nuclear Research of the Russian Academy of Sciences
M. Kordosky, William & Mary
Y. Kudenko, Institute for Nuclear Research of the Russian Academy of Sciences
T. Kutter, Louisiana State University
J. Maneira, Universidade de Lisboa
S. Manly, University of Rochester
D. A. Martinez Caicedo, South Dakota School of Mines & Technology
C. Mauger, University of Pennsylvania
K. McFarland, University of Rochester
C. McGrew, Stony Brook University
A. Mefodev, Institute for Nuclear Research of the Russian Academy of Sciences
O. Mineev, Institute for Nuclear Research of the Russian Academy of Sciences
D. Naples, University of Pittsburgh

Document Type

Article

Publication Date

2-1-2023

Abstract

Neutrino oscillation experiments require a precise measurement of the neutrino energy. However, the kinematic detection of the final-state neutron in the neutrino interaction is missing in current neutrino oscillation experiments. The missing neutron kinematic detection results in a smaller detected neutrino energy than the true neutrino energy. A novel 3D-projection scintillator tracker, which consists of roughly ten million active cubes covered with an optical reflector, is capable of measuring the neutron kinetic energy and direction on an event-by-event basis using the time-of-flight technique thanks to the fast timing, fine granularity, and high light yield. The ν¯μ interactions tend to produce neutrons in the final state. By measuring the neutron kinetic energy, the ν¯μ energy can be reconstructed better, allowing a tighter incoming neutrino flux constraint. This article shows the detector's ability to reconstruct neutron kinetic energy and the ν¯μ flux constraint achieved by selecting the charged-current interactions without mesons or protons in the final state.

Publication Source (Journal or Book title)

Physical Review D

Share

COinS