Algebraic Solutions for the Asymmetric Rotor
Document Type
Article
Publication Date
8-1-1999
Abstract
Exact algebraic solutions for the energy eigenvalues and eigenstates of the asymmetric rotor are found using an infinite-dimensional algebraic method. The theory exploits a mapping from the Jordan-Schwinger realization of the SO(3)~SU(2) algebra to a complementary SU(1, 1) structure. The Bethe ansatz solutions that emerge are shown to display the intrinsic Vierergruppe (D2) symmetry of the rotor when the angular quantum number I is an integer, and the intrinsic quaternion group Q (i.e., the double group D*2) symmetry when I is a half-integer. © 1999 Academic Press.
Publication Source (Journal or Book title)
Annals of Physics
First Page
224
Last Page
237
Recommended Citation
Pan, F., & Draayer, J. (1999). Algebraic Solutions for the Asymmetric Rotor. Annals of Physics, 275 (2), 224-237. https://doi.org/10.1006/aphy.1999.5931