The Advanced Particle-astrophysics Telescope: Simulation of the Instrument Performance for Gamma-Ray Detection

Authors

S. Alnussirat, Louisiana State University
C. Altomare, Istituto Nazionale di Fisica Nucleare, Sezione di Bari
R. G. Bose, McDonnell Center for the Space Sciences
D. Braun, McDonnell Center for the Space Sciences
James H. Buckley, McDonnell Center for the Space Sciences
J. D. Buhler, McKelvey School of Engineering
E. Burns, Louisiana State University
R. D. Chamberlain, McKelvey School of Engineering
Wenlei Chen, College of Science and Engineering
M. L. Cherry, Louisiana State University
L. Di Venere, Istituto Nazionale di Fisica Nucleare, Sezione di Bari
J. Dumonthier, NASA Goddard Space Flight Center
M. Errando, McDonnell Center for the Space Sciences
S. Funk, Friedrich-Alexander-Universität Erlangen-Nürnberg
F. Giordano, Istituto Nazionale di Fisica Nucleare, Sezione di Bari
J. Hoffman, McDonnell Center for the Space Sciences
Z. Hughes, McDonnell Center for the Space Sciences
D. J. Huth, McDonnell Center for the Space Sciences
P. L. Kelly, College of Science and Engineering
J. F. Krizmanic, College of Engineering and Information Technology
M. Kuwahara, University of Hawaiʻi at Mānoa
F. Licciulli, Istituto Nazionale di Fisica Nucleare, Sezione di Bari
G. Liu, University of Hawaiʻi at Mānoa
M. N. Mazziotta, Istituto Nazionale di Fisica Nucleare, Sezione di Bari
J. G. Mitchell, The George Washington University
J. W. Mitchell, College of Engineering and Information Technology
G. A. de Nolfo, NASA Goddard Space Flight Center
R. Paoletti, Università degli Studi di Siena
R. Pillera, Istituto Nazionale di Fisica Nucleare, Sezione di Bari
B. F. Rauch, McDonnell Center for the Space Sciences
D. Serini, Istituto Nazionale di Fisica Nucleare, Sezione di Bari
G. Simburger, McDonnell Center for the Space Sciences
M. Sudvarg, McKelvey School of Engineering

Document Type

Conference Proceeding

Publication Date

3-18-2022

Abstract

We present simulations of the instrument performance of the Advanced Particle-astrophysics Telescope (APT), a mission concept of a γ-ray and cosmic-ray observatory in a sun-Earth Lagrange orbit. The key components of the APT detector include a multiple-layer tracker composed of scintillating fibers and an imaging calorimeter composed of thin layers of CsI:Na scintillators. The design is aimed at maximizing effective area and field of view for γ-ray and cosmic-ray measurements, subject to constraints on instrument cost and total payload mass. We simulate a detector design based on 3-meter scintillating fibers and develop reconstruction algorithms for γ-rays from a few hundreds of keV up to a few TeV energies. At the photon energy above 30 MeV, pair-production/shower reconstruction is applied; the results show that APT could provide an order of magnitude improvement in effective area and sensitivity for γ-ray detection compared with the Fermi Large Area Telescope (LAT). A multiple-Compton-scattering reconstruction at photon energies below 10 MeV achieves sensitive detection of faint γ-ray bursts (GRBs) and other γ-ray transients down to ∼ 0.01 MeV/cm2 with degree-level to sub-degree-level localization accuracy. The Compton analysis also provides a measurement of polarization where the minimum detectable degree of polarization for ∼ 1 MeV/cm2 GRBs is below 20%. In addition to the APT simulations, we present the simulated performance of the Antarctic Demonstrator for APT, a 0.5m-square cross section balloon experiment that includes all of the key elements of the full APT detector.

Publication Source (Journal or Book title)

Proceedings of Science

This document is currently not available here.

Share

COinS