Document Type
Article
Publication Date
10-3-2014
Abstract
We present magnetization, specific heat, resistivity, and Hall effect measurements on the cubic B20 phase of MnGe and CoGe and compare to measurements of isostructural FeGe and electronic-structure calculations. In MnGe, we observe a transition to a magnetic state at Tc=275K as identified by a sharp peak in the ac magnetic susceptibility, as well as second phase transition at lower temperature that becomes apparent only at finite magnetic field. We discover two phase transitions in the specific heat at temperatures much below the Curie temperature, one of which we associate with changes to the magnetic structure. A magnetic field reduces the temperature of this transition which corresponds closely to the sharp peak observed in the ac susceptibility at fields above 5 kOe. The second of these transitions is not affected by the application of field and has no signature in the magnetic properties or our crystal-structure parameters. Transport measurements indicate that MnGe is metallic with a negative magnetoresistance similar to that seen in isostructural FeGe and MnSi. Hall effect measurements reveal a carrier concentration of about 0.5 carriers per formula unit, also similar to that found in FeGe and MnSi. CoGe is shown to be a low carrier density metal with a very small, nearly temperature-independent diamagnetic susceptibility.
Publication Source (Journal or Book title)
Physical Review B - Condensed Matter and Materials Physics
Recommended Citation
Ditusa, J., Zhang, S., Yamaura, K., Xiong, Y., Prestigiacomo, J., Fulfer, B., Adams, P., Brickson, M., Browne, D., Capan, C., Fisk, Z., & Chan, J. (2014). Magnetic, thermodynamic, and electrical transport properties of the noncentrosymmetric B20 germanides MnGe and CoGe. Physical Review B - Condensed Matter and Materials Physics, 90 (14) https://doi.org/10.1103/PhysRevB.90.144404