Robustness of entanglement in Hawking radiation for optical systems immersed in thermal baths

Document Type

Article

Publication Date

4-15-2023

Abstract

Entanglement is the quantum signature of Hawking's particle pair creation from causal horizons, for gravitational and analog systems alike. Ambient thermal fluctuations, ubiquitous in realistic situations, strongly affect the entanglement generated in the Hawking process, completely extinguishing it when the ambient temperature is comparable to the Hawking temperature. In this work, we show that optical analog systems have a built-in robustness to thermal fluctuations which are at rest in the laboratory. In such systems, horizons move relative to the laboratory frame at velocities close to the speed of light. We find that a subtle interplay between this relative velocity and dispersion protects the Hawking-generated entanglement - allowing ambient temperatures several orders of magnitude larger than the Hawking temperature without significantly affecting entanglement.

Publication Source (Journal or Book title)

Physical Review D

This document is currently not available here.

Share

COinS