Document Type
Article
Publication Date
9-20-2016
Abstract
We report on a study of epitaxially grown ultrathin Pb films that are only a few atoms thick and have parallel critical magnetic fields much higher than the expected limit set by the interaction of electron spins with a magnetic field, that is, the Clogston-Chandrasekhar limit. The epitaxial thin films are classified as dirty-limit superconductors because their mean-free paths, which are limited by surface scattering, are smaller than their superconducting coherence lengths. The uniformity of superconductivity in these thin films is established by comparing scanning tunneling spectroscopy, scanning superconducting quantum interference device (SQUID) magnetometry, double-coil mutual inductance, and magneto-transport, data that provide average superfluid rigidity on length scales covering the range from microscopic to macroscopic. We argue that the survival of superconductivity at Zeeman energies much larger than the superconducting gap can be understood only as the consequence of strong spin-orbit coupling that, together with substrate-induced inversionsymmetry breaking, produces spin splitting in the normal-state energy bands that is much larger than the superconductor's energy gap.
Publication Source (Journal or Book title)
Proceedings of the National Academy of Sciences of the United States of America
First Page
10513
Last Page
10517
Recommended Citation
Nam, H., Chen, H., Liu, T., Kim, J., Zhang, C., Yong, J., Lemberger, T., Kratz, P., Kirtley, J., Moler, K., Adams, P., MacDonald, A., & Shih, C. (2016). Ultrathin two-dimensional superconductivity with strong spin-orbit coupling. Proceedings of the National Academy of Sciences of the United States of America, 113 (38), 10513-10517. https://doi.org/10.1073/pnas.1611967113