Document Type
Article
Publication Date
10-1-2017
Abstract
The classical-input quantum-output (cq) wiretap channel is a communication model involving a classical sender X, a legitimate quantum receiver B, and a quantum eavesdropper E. The goal of a private communication protocol that uses such a channel is for the sender X to transmit a message in such a way that the legitimate receiver B can decode it reliably, while the eavesdropper E learns essentially nothing about which message was transmitted. The ε-one-shot private capacity of a cq wiretap channel is equal to the maximum number of bits that can be transmitted over the channel, such that the privacy error is no larger than ε∈ (0 , 1). The present paper provides a lower bound on the ε-one-shot private classical capacity, by exploiting the recently developed techniques of Anshu, Devabathini, Jain, and Warsi, called position-based coding and convex splitting. The lower bound is equal to a difference of the hypothesis testing mutual information between X and B and the “alternate” smooth max-information between X and E. The one-shot lower bound then leads to a non-trivial lower bound on the second-order coding rate for private classical communication over a memoryless cq wiretap channel.
Publication Source (Journal or Book title)
Quantum Information Processing
Recommended Citation
Wilde, M. (2017). Position-based coding and convex splitting for private communication over quantum channels. Quantum Information Processing, 16 (10) https://doi.org/10.1007/s11128-017-1718-4