Authors

K. Abe, The University of Tokyo
N. Akhlaq, Queen Mary University of London
R. Akutsu, The University of Tokyo
A. Ali, Kyoto University
C. Alt, ETH Zürich
C. Andreopoulos, Rutherford Appleton Laboratory
L. Anthony, Imperial College London
M. Antonova, Universitat de València
S. Aoki, Kobe University
A. Ariga, University of Bern
T. Arihara, Tokyo Metropolitan University
Y. Asada, Yokohama National University
Y. Ashida, Kyoto University
E. T. Atkin, Imperial College London
Y. Awataguchi, Tokyo Metropolitan University
S. Ban, Kyoto University
M. Barbi, University of Regina
G. J. Barker, Faculty of Science, Engineering and Medicine
G. Barr, University of Oxford
D. Barrow, University of Oxford
C. Barry, University of Liverpool
M. Batkiewicz-Kwasniak, Henryk Niewodniczanski Institute of Nuclear Physics of the Polish Academy of Sciences
A. Beloshapkin, Institute for Nuclear Research of the Russian Academy of Sciences
F. Bench, University of Liverpool
V. Berardi, Istituto Nazionale di Fisica Nucleare, Sezione di Bari
S. Berkman, The University of British Columbia
L. Berns, Tokyo Institute of Technology
S. Bhadra, York University
S. Bienstock, Sorbonne Universite
A. Blanchet, Sorbonne Universite
A. Blondel, Sorbonne Universite
S. Bolognesi, Universite Paris-Saclay
T. Bonus, University of Wroclaw
B. Bourguille, Institut de Fisicia d'Altes Energies
S. B. Boyd, University of Warwick
D. Brailsford, Lancaster University
A. Bravar, University of Geneva
D. Bravo Berguño, University Autonoma Madrid
C. Bronner, University of Tokyo
S. Bron, University of Geneva
A. Bubak, University of Silesia
M. Buizza Avanzini, Ecole Polytechnique
J. Calcutt, Michigan State University
T. Campbell, University of Colorado, Boulder
S. Cao, High Energy Accelerator Research Organization
S. L. Cartwright, University of Sheffield
M. G. Catanesi, Universita e Politecnico di Bari
A. Cervera, IFIC
A. Chappell, University of Warwick
C. Checchia, Università di Padova

Document Type

Article

Publication Date

4-1-2021

Abstract

We report measurements of the flux-integrated and + charged-current cross-sections on water and hydrocarbon targets using the T2K anti-neutrino beam with a mean beam energy of 0.86 GeV. The signal is defined as the (anti-)neutrino charged-current interaction with one induced and no detected charged pion or proton. These measurements are performed using a new WAGASCI module recently added to the T2K setup in combination with the INGRID Proton Module. The phase space of muons is restricted to the high-detection efficiency region, 400 and 30 , in the laboratory frame. An absence of pions and protons in the detectable phase spaces of 200, 70 and 600, 70 is required. In this paper, both the; cross-sections and +; cross-sections on water and hydrocarbon targets and their ratios are provided by using the D'Agostini unfolding method. The results of the integrated ; cross-section measurements over this phase space are ;\sigma{\rm H{2}O}=(1.082\pm0.068(\rm stat.) {+0.145}{-0.128}(\rm syst.)) \times 10 {-39}\,{\rm cm {2} / nucleon};, ;\sigma{\rm CH}=(1.096\pm0.054(\rm stat.) {+0.132}{-0.117}(\rm syst.)) \times 10 {-39}\,{\rm cm {2} / nucleon};, and ;\sigma{\rm H{2}O}/\sigma{\rm CH} = 0.987\pm0.078(\rm stat.) {+0.093}{-0.090}(\rm syst.);. The +; cross-section is ;\sigma{\rm H{2}O} = (1.155\pm0.064(\rm stat.) {+0.148}{-0.129}(\rm syst.)) \times 10 {-39}\,{\rm cm {2} / nucleon};, ;\sigma{\rm CH}=(1.159\pm0.049(\rm stat.) {+0.129}{-0.115}(\rm syst.)) \times 10 {-39}\,{\rm cm {2} / nucleon};, and ;\sigma{\rm H{2}O}/\sigma{\rm CH}=0.996\pm0.069(\rm stat.) {+0.083}{-0.078}(\rm syst.);.

Publication Source (Journal or Book title)

Progress of Theoretical and Experimental Physics

Share

COinS