On entropy determination from magnetic and calorimetric experiments in conventional giant magnetocaloric materials

Document Type

Article

Publication Date

4-14-2018

Abstract

In this work, we discuss measurement protocols for the determination of the magnetic entropy change associated with first-order magneto-structural transitions from both magnetization and calorimetric experiments. The Cu-doped Ni2MnGa Heusler alloy with a first-order magneto-structural phase transition is used as a case study to illustrate how commonly-used magnetization measurement protocols result in spurious entropy evaluations. Two magnetization measurement protocols which allow for the accurate assessment of the magnetic entropy change across first-order magneto-structural transitions are presented. In addition, calorimetric measurements were performed to validate the results from the magnetization measurements. Self-consistent results between the magnetization and calorimetric measurements were obtained when the non-equilibrium thermodynamic state was carefully handled. Such methods could be applicable to other systems displaying giant magnetocaloric effects caused by first-order phase transitions with magnetic and thermal hysteresis.

Publication Source (Journal or Book title)

Journal of Applied Physics

This document is currently not available here.

Share

COinS