Document Type

Article

Publication Date

7-1-2016

Abstract

Quantum nature of classical flat Kasner spacetime is studied using effective spacetime description in loop quantum cosmology (LQC). We find that even though the spacetime curvature vanishes at the classical level, nontrivial quantum gravitational effects can arise. For the standard loop quantization of Bianchi-I spacetime, which uniquely yields universal bounds on expansion and shear scalars and results in a generic resolution of strong singularities, we find that a flat Kasner metric is not a physical solution of the effective spacetime description, except in a limit. The lack of a flat Kasner metric at the quantum level results from a novel feature of the loop quantum Bianchi-I spacetime: quantum geometry induces nonvanishing spacetime curvature components, making it not Ricci flat even when no matter is present. The noncurvature singularity of the classical flat Kasner spacetime is avoided, and the effective spacetime transits from a flat Kasner spacetime in asymptotic future, to a Minkowski spacetime in asymptotic past. Interestingly, for an alternate loop quantization which does not share some of the fine features of the standard quantization, flat Kasner spacetime with expected classical features exists. In this case, even with nontrivial quantum geometric effects, the spacetime curvature vanishes. These examples show that the character of even a flat classical vacuum spacetime can alter in a fundamental way in quantum gravity and is sensitive to the quantization procedure.

Publication Source (Journal or Book title)

International Journal of Modern Physics D

Share

COinS