Document Type

Article

Publication Date

11-6-2019

Abstract

We report magnetotransport measurements of the critical field behavior of thin Al films deposited onto multiply connected substrates. The substrates were fabricated via a standard electrochemical process that produced a triangular array of 66-nm-diameter holes having a lattice constant of 100 nm. The critical field transition of the Al films was measured near Tc as a function of field orientation relative to the substrate normal. With the field oriented along the normal (θ=0), we observe reentrant superconductivity at a characteristic matching field Hm=0.22 T, corresponding to one flux quantum per hole. In tilted fields, the position H∗ of the reentrance feature increases as sec(θ), but the resistivity traces are somewhat more complex than those of a continuous superconducting film. We show that when the tilt angle is tuned such that H∗ is of the order of the upper critical field Hc, the entire critical region is dominated by the enhanced dissipation associated with a submatching perpendicular component of the applied field. At higher tilt angles a local maximum in the critical field is observed when the perpendicular component of the field is equal to the matching field.

Publication Source (Journal or Book title)

Physical Review B

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 6
  • Usage
    • Downloads: 65
    • Abstract Views: 6
  • Captures
    • Readers: 3
see details

Share

COinS