Authors

Y. H. Ryu, Korea Astronomy and Space Science Institute
J. C. Yee, Harvard-Smithsonian Center for Astrophysics
A. Udalski, Uniwersytet Warszawski
I. A. Bond, Massey University Auckland
Y. Shvartzvald, Jet Propulsion Laboratory
W. Zang, Tsinghua University
R. Figuera Jaimes, University of St Andrews
U. G. Jorgensen, Niels Bohr Institutet
W. Zhu, The Ohio State University
C. X. Huang, MIT Kavli Institute for Astrophysics and Space Research
Y. K. Jung, Harvard-Smithsonian Center for Astrophysics
M. D. Albrow, University of Canterbury
S. J. Chung, Korea Astronomy and Space Science Institute
A. Gould, Korea Astronomy and Space Science Institute
C. Han, Chungbuk National University
K. H. Hwang, Korea Astronomy and Space Science Institute
I. G. Shin, Harvard-Smithsonian Center for Astrophysics
S. M. Cha, Korea Astronomy and Space Science Institute
D. J. Kim, Korea Astronomy and Space Science Institute
H. W. Kim, Korea Astronomy and Space Science Institute
S. L. Kim, Korea Astronomy and Space Science Institute
C. U. Lee, Korea Astronomy and Space Science Institute
D. J. Lee, Korea Astronomy and Space Science Institute
Y. Lee, Korea Astronomy and Space Science Institute
B. G. Park, Korea Astronomy and Space Science Institute
R. W. Pogge, The Ohio State University
S. Calchi Novati, Infrared Processing & Analysis Center
S. Carey, Spitzer Science Center
C. B. Henderson, California Institute of Technology
C. Beichman, California Institute of Technology
B. S. Gaudi, The Ohio State University
P. Mróz, Uniwersytet Warszawski
R. Poleski, Uniwersytet Warszawski

Document Type

Article

Publication Date

1-1-2018

Abstract

We report the discovery of OGLE-2016-BLG-1190Lb, which is likely to be the first Spitzer microlensing planet in the Galactic bulge/bar, an assignation that can be confirmed by two epochs of high-resolution imaging of the combined source-lens baseline object. The planet's mass, Mp = 13.4 ± 0.9 MJ, places it right at the deuterium-burning limit, i.e., the conventional boundary between "planets" and "brown dwarfs." Its existence raises the question of whether such objects are really "planets" (formed within the disks of their hosts) or "failed stars" (low-mass objects formed by gas fragmentation). This question may ultimately be addressed by comparing disk and bulge/bar planets, which is a goal of the Spitzer microlens program. The host is a G dwarf, M host = 0.89 ± 0.07 M o, and the planet has a semimajor axis a ∼ 2.0 au. We use Kepler K2 Campaign 9 microlensing data to break the lens-mass degeneracy that generically impacts parallax solutions from Earth-Spitzer observations alone, which is the first successful application of this approach. The microlensing data, derived primarily from near-continuous, ultradense survey observations from OGLE, MOA, and three KMTNet telescopes, contain more orbital information than for any previous microlensing planet, but not quite enough to accurately specify the full orbit. However, these data do permit the first rigorous test of microlensing orbital-motion measurements, which are typically derived from data taken over <1% of an orbital period.

Publication Source (Journal or Book title)

Astronomical Journal

Share

COinS