Document Type
Article
Publication Date
12-7-2010
Abstract
Stray neutrons generated in passively scattered proton therapy are of concern because they increase the risk that a patient will develop a second cancer. Several investigations characterized stray neutrons in proton therapy using experimental measurements and Monte Carlo simulations, but capabilities of analytical methods to predict neutron exposures are less well developed. The goal of this study was to develop a new analytical model to calculate neutron ambient dose equivalent in air and equivalent dose in phantom based on Monte Carlo modeling of a passively scattered proton therapy unit. The accuracy of the new analytical model is superior to a previous analytical model and comparable to the accuracy of typical Monte Carlo simulations and measurements. Predictions from the new analytical model agreed reasonably well with corresponding values predicted by a Monte Carlo code using an anthropomorphic phantom. © 2010 Institute of Physics and Engineering in Medicine.
Publication Source (Journal or Book title)
Physics in Medicine and Biology
First Page
6975
Last Page
6985
Recommended Citation
Zhang, R., Pérez-Andújar, A., Fontenot, J., Taddei, P., & Newhauser, W. (2010). An analytic model of neutron ambient dose equivalent and equivalent dose for proton radiotherapy. Physics in Medicine and Biology, 55 (23), 6975-6985. https://doi.org/10.1088/0031-9155/55/23/S01