Authors

A. Abed Abud, University of LiverpoolFollow
B. Abi, University of OxfordFollow
R. Acciarri, Fermi National Accelerator LaboratoryFollow
M. A. Acero, Universidad del Atlántico, Colombia
G. Adamov, Georgian Technical UniversityFollow
D. Adams, Brookhaven National LaboratoryFollow
M. Adinolfi, University of BristolFollow
A. Aduszkiewicz, University of HoustonFollow
Z. Ahmad, Variable Energy Cyclotron Centre IndiaFollow
J. Ahmed, University of WarwickFollow
T. Alion, University of Sussex
S. Alonso Monsalve, ETH Zürich
M. Alrashed, Kansas State UniversityFollow
C. Alt, ETH ZürichFollow
A. Alton, Augustana UniversityFollow
P. Amedo, Universidad de Santiago de CompostelaFollow
J. Anderson, Argonne National LaboratoryFollow
C. Andreopoulos, University of LiverpoolFollow
M. P. Andrews, Fermi National Accelerator LaboratoryFollow
F. Andrianala, Université d'Antananarivo
S. Andringa, Laboratório de Instrumentacao e Física Experimental de PartículasFollow
N. Anfimov, Joint Institute for Nuclear Research, Dubna
A. Ankowski, SLAC National Accelerator Laboratory
M. Antonova, CSIC-UV - Instituto de Física Corpuscular
S. Antusch, Universitat Basel
A. Aranda-Fernandez, Universidad de Colima
A. Ariga, University of Bern
L. O. Arnold, Columbia University
M. A. Arroyave, Universidad EIA
J. Asaadi, The University of Texas at Arlington
A. Aurisano, University of Cincinnati
V. Aushev, Taras Shevchenko National University of Kyiv
D. Autiero, Institut de Physique des 2 Infinis de Lyon

Document Type

Article

Publication Date

12-1-2021

Abstract

The Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. The experiment consists of a near detector, sited close to the source of the beam, and a far detector, sited along the beam at a large distance. This document, the DUNE Near Detector Conceptual Design Report (CDR), describes the design of the DUNE near detector and the science program that drives the design and technology choices. The goals and requirements underlying the design, along with projected performance are given. It serves as a starting point for a more detailed design that will be described in future documents.

Publication Source (Journal or Book title)

Instruments

Share

COinS