Authors

J. Abraham, Universidad Tecnologica NacionalFollow
P. Abreu, Instituto Superior TécnicoFollow
M. Aglietta, Università degli Studi di TorinoFollow
C. Aguirre, Universidad Catolica de BoliviaFollow
D. Allard, APC - AstroParticule et CosmologieFollow
I. Allekotte, Centro Atomico BarilocheFollow
J. Allen, New York UniversityFollow
P. Allison, The Ohio State UniversityFollow
J. Alvarez-Muñiz, Universidad de Santiago de CompostelaFollow
M. Ambrosio, Istituto Nazionale di Fisica Nucleare, Sezione di NapoliFollow
L. Anchordoqui, Northeastern UniversityFollow
S. Andringa, Instituto Superior TécnicoFollow
A. Anzalone, INAF Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo
C. Aramo, Istituto Nazionale di Fisica Nucleare, Sezione di Napoli
S. Argirò, Università degli Studi di Torino
K. Arisaka, University of California, Los Angeles
E. Armengaud, APC - AstroParticule et Cosmologie
F. Arneodo, Laboratori Nazionali del Gran Sasso
F. Arqueros, Universidad Complutense de Madrid
T. Asch, Karlsruher Institut für Technologie, Campus Nord
H. Asorey, Centro Atomico Bariloche
P. Assis, Instituto Superior Técnico
B. S. Atulugama, Pennsylvania State University
J. Aublin, Laboratoire de Physique Nucléaire et de Hautes Energies
M. Ave, The Enrico Fermi Institute
G. Avila, Comision Nacional de Energia Atomica Argentina
T. Bäcker, Universität Siegen
D. Badagnani, Universidad Nacional de La Plata
A. F. Barbosa, Centro Brasileiro de Pesquisas Físicas
D. Barnhill, University of California, Los Angeles
S. L.C. Barroso, Universidade Estadual do Sudoeste da Bahia
P. Bauleo, Colorado State University
J. J. Beatty, The Ohio State University

Document Type

Article

Publication Date

5-27-2008

Abstract

The surface detector array of the Pierre Auger Observatory is sensitive to Earth-skimming tau neutrinos that interact in Earth's crust. Tau leptons from ντ charged-current interactions can emerge and decay in the atmosphere to produce a nearly horizontal shower with a significant electromagnetic component. The data collected between 1 January2004 and 31 August 2007 are used to place an upper limit on the diffuse flux of ντ at EeV energies. Assuming an Eν-2 differential energy spectrum the limit set at 90% C.L. is Eν2dNντ/dEν<1.3×10-7GeVcm-2s-1sr-1 in the energy range 2×1017eV

Publication Source (Journal or Book title)

Physical Review Letters

Share

COinS