Authors

A. Aab, Universität SiegenFollow
P. Abreu, Universidade de LisboaFollow
M. Aglietta, Università degli Studi di TorinoFollow
E. J. Ahn, Fermi National Accelerator LaboratoryFollow
I. Al Samarai, Institut de Physique Nucléaire d’OrsayFollow
I. F.M. Albuquerque, Universidade de São PauloFollow
I. Allekotte, Instituto BalseiroFollow
P. Allison, The Ohio State UniversityFollow
A. Almela, Universidad Tecnologica Nacional
J. Alvarez Castillo, Universidad Nacional Autónoma de MéxicoFollow
J. Alvarez-Muñiz, Universidad de Santiago de CompostelaFollow
R. Alves Batista, Universität HamburgFollow
M. Ambrosio, Università degli Studi di Napoli Federico IIFollow
A. Aminaei, Radboud UniversiteitFollow
G. A. Anastasi, Università degli Studi di CataniaFollow
L. Anchordoqui, Lehman CollegeFollow
S. Andringa, Universidade de LisboaFollow
C. Aramo, Università degli Studi di Napoli Federico II
F. Arqueros, Universidad Complutense de Madrid
N. Arsene, Universitatea din Bucuresti
H. Asorey, Instituto Balseiro
P. Assis, Universidade de Lisboa
J. Aublin, Laboratoire de Physique Nucléaire et de Hautes Energies
G. Avila, Pierre Auger Observatory
N. Awal, New York University
A. M. Badescu, University Politehnica of Bucharest
C. Baus, Karlsruher Institut für Technologie
J. J. Beatty, The Ohio State University
K. H. Becker, Bergische Universität Wuppertal
J. A. Bellido, The University of Adelaide
C. Berat, Universite Grenoble Alpes
M. E. Bertaina, Università degli Studi di Torino
X. Bertou, Instituto Balseiro

Document Type

Article

Publication Date

6-14-2016

Abstract

The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30-80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy - corrected for geometrical effects - is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.

Publication Source (Journal or Book title)

Physical Review D

Share

COinS