Authors

A. Aab, Universität Siegen
P. Abreu, Instituto Superior Técnico
M. Aglietta, Istituto Nazionale di Fisica Nucleare, Sezione di Torino
E. J. Ahn, Fermi National Accelerator Laboratory
I. Al Samarai, Laboratoire de Physique Nucléaire et de Hautes Energies
I. F.M. Albuquerque, Universidade de São Paulo
I. Allekotte, Centro Atomico Bariloche
P. Allison, The Ohio State University
A. Almela, Consejo Nacional de Investigaciones Científicas y Técnicas
J. Alvarez Castillo, Universidad Nacional Autónoma de México
J. Alvarez-Muñiz, Universidad de Santiago de Compostela
M. Ambrosio, Istituto Nazionale di Fisica Nucleare, Sezione di Napoli
G. A. Anastasi, Istituto Nazionale di Fisica Nucleare - INFN
L. Anchordoqui, Lehman College
B. Andrada, Consejo Nacional de Investigaciones Científicas y Técnicas
S. Andringa, Instituto Superior Técnico
C. Aramo, Istituto Nazionale di Fisica Nucleare, Sezione di Napoli
F. Arqueros, Universidad Complutense de Madrid
N. Arsene, Universitatea din Bucuresti
H. Asorey, Centro Atomico Bariloche
P. Assis, Instituto Superior Técnico
J. Aublin, Laboratoire de Physique Nucléaire et de Hautes Energies
G. Avila, Pierre Auger Observatory
A. M. Badescu, University Politehnica of Bucharest
A. Balaceanu, Horia Hulubei National Institute of Physics and Nuclear Engineering
C. Baus, Karlsruher Institut für Technologie
J. J. Beatty, The Ohio State University
K. H. Becker, Bergische Universität Wuppertal
J. A. Bellido, The University of Adelaide
C. Berat, Universite Grenoble Alpes
M. E. Bertaina, Istituto Nazionale di Fisica Nucleare, Sezione di Torino
X. Bertou, Centro Atomico Bariloche
P. L. Biermann, Max Planck Institute for Radio Astronomy

Document Type

Article

Publication Date

3-3-2017

Abstract

AMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the Pierre Auger Observatory designed to extend its energy range of detection and to directly measure the muon content of the cosmic ray primary particle showers. The array will be formed by an infill of surface water-Cherenkov detectors associated with buried scintillation counters employed for muon counting. Each counter is composed of three scintillation modules, with a 10 m2 detection area per module. In this paper, a new generation of detectors, replacing the current multi-pixel photomultiplier tube (PMT) with silicon photo sensors (aka. SiPMs), is proposed. The selection of the new device and its front-end electronics is explained. A method to calibrate the counting system that ensures the performance of the detector is detailed. This method has the advantage of being able to be carried out in a remote place such as the one where the detectors are deployed. High efficiency results, i.e. 98 % efficiency for the highest tested overvoltage, combined with a low probability of accidental counting (∼2 %), show a promising performance for this new system.

Publication Source (Journal or Book title)

Journal of Instrumentation

Share

COinS