Authors

A. Aab, Radboud Universiteit
P. Abreu, Universidade de Lisboa
M. Aglietta, Istituto Nazionale di Fisica Nucleare, Sezione di Torino
J. M. Albury, The University of Adelaide
I. Allekotte, Centro Atomico Bariloche
A. Almela, Universidad Nacional de San Martín
J. Alvarez Castillo, Universidad Nacional Autónoma de México
J. Alvarez-Muñiz, Universidad de Santiago de Compostela
R. Alves Batista, Radboud Universiteit
G. A. Anastasi, Istituto Nazionale di Fisica Nucleare, Sezione di Torino
L. Anchordoqui, Lehman College
B. Andrada, Universidad Nacional de San Martín
S. Andringa, Universidade de Lisboa
C. Aramo, Istituto Nazionale di Fisica Nucleare, Sezione di Napoli
P. R.Araújo Ferreira, Rheinisch-Westfälische Technische Hochschule Aachen
H. Asorey, Universidad Nacional de San Martín
P. Assis, Universidade de Lisboa
G. Avila, Pierre Auger Observatory
A. M. Badescu, University Politehnica of Bucharest
A. Bakalova, Institute of Physics of the Czech Academy of Sciences
A. Balaceanu, Horia Hulubei National Institute of Physics and Nuclear Engineering
F. Barbato, Istituto Nazionale di Fisica Nucleare, Sezione di Napoli
R. J.Barreira Luz, Universidade de Lisboa
K. H. Becker, Bergische Universität Wuppertal
J. A. Bellido, The University of Adelaide
C. Berat, Universite Grenoble Alpes
M. E. Bertaina, Istituto Nazionale di Fisica Nucleare, Sezione di Torino
X. Bertou, Centro Atomico Bariloche
P. L. Biermann, Max Planck Institute for Radio Astronomy
T. Bister, Rheinisch-Westfälische Technische Hochschule Aachen
J. Biteau, Universite Paris-Saclay
A. Blanco, Universidade de Lisboa
J. Blazek, Institute of Physics of the Czech Academy of Sciences

Document Type

Article

Publication Date

9-1-2020

Abstract

Extensive air showers, originating from ultra-high energy cosmic rays, have been successfully measured through the use of arrays of water-Cherenkov detectors (WCDs). Sophisticated analyses exploiting WCD data have made it possible to demonstrate that shower simulations, based on different hadronic-interaction models, cannot reproduce the observed number of muons at the ground. The accurate knowledge of the WCD response to muons is paramount in establishing the exact level of this discrepancy. In this work, we report on a study of the response of a WCD of the Pierre Auger Observatory to atmospheric muons performed with a hodoscope made of resistive plate chambers (RPCs), enabling us to select and reconstruct nearly 600 thousand single muon trajectories with zenith angles ranging from 0 to 55. Comparison of distributions of key observables between the hodoscope data and the predictions of dedicated simulations allows us to demonstrate the accuracy of the latter at a level of 2%. As the WCD calibration is based on its response to atmospheric muons, the hodoscope data are also exploited to show the long-term stability of the procedure.

Publication Source (Journal or Book title)

Journal of Instrumentation

Share

COinS