Document Type

Article

Publication Date

7-10-2009

Abstract

Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and unoscillated portion of the neutrino flux. A total of 514 muonlike events are measured between -1≤cos θzenith≤0.4 in a total exposure of 2.30×1014cm2s. The measured flux normalization is 1.22±0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos θzenith>0.4 is measured to be (3.31±0.01(stat)±0.09(sys))×10-10μ/s/cm2. © 2009 The American Physical Society.

Publication Source (Journal or Book title)

Physical Review D - Particles, Fields, Gravitation and Cosmology

Share

COinS