Author ORCID Identifier
Berry, Christopher P L: 0000-0003-3870-7215
Soni, Siddharth: 0000-0003-3856-8534
Document Type
Article
Publication Date
2021
Abstract
The observation of gravitational waves is hindered by the presence of transient noise (glitches). We study data from the third observing run of the Advanced LIGO detectors, and identify new glitch classes: fast scattering/crown and low-frequency blips. Using training sets assembled by monitoring of the state of the detector, and by citizen-science volunteers, we update the Gravity Spy machine-learning algorithm for glitch classification. We find that fast scattering/crown, linked to ground motion at the detector sites, is especially prevalent, and identify two subclasses linked to different types of ground motion. Reclassification of data based on the updated model finds that similar to 27% of all transient noise at LIGO Livingston belongs to the fast scattering class, while similar to 8% belongs to the low-frequency blip class, making them the most frequent and fourth most frequent sources of transient noise at that site. Our results demonstrate both how glitch classification can reveal potential improvements to gravitational-wave detectors, and how, given an appropriate framework, citizen-science volunteers may make discoveries in large data sets.
Publication Source (Journal or Book title)
Classical And Quantum Gravity
Recommended Citation
Soni, S., Berry, C. P., Coughlin, S. B., Harandi, M., Soni, S., Crowston, K., Osterlund, C., Patane, O., Katsaggelos, A. K., Trouille, L., Baranowski, V. G., Domainko, W. F., Kaminski, K., Rodriguez, M. A., Marciniak, U., Nauta, P., Niklasch, G., Rote, R. R., Teglas, B., Unsworth, C., & Zhang, C. (2021). Discovering Features In Gravitational-Wave Data Through Detector Characterization, Citizen Science And Machine Learning. Classical And Quantum Gravity, 38 (19) https://doi.org/10.1088/1361-6382/ac1ccb