Document Type

Article

Publication Date

7-15-2018

Abstract

We demonstrate a transient absorption scheme that uses a fixed-spectrum attosecond pulse train in conjunction with a tunable probe laser to access a wide range of nonlinear light-atom interactions. We exhibit control over the time-dependent Autler–Townes splitting of the 1s4p absorption line in helium, and study its evolution from a resonant doublet to a light-induced sideband with changing probe wavelength. The non-commensurate probe also allows for the background-free study of two-infrared-photon emission processes in a collinear geometry. Using this capability, we observe two different emission pathways with non-trivial delay dependencies, one prompt and the other delayed. We identify the nonlinear processes underlying these emissions by comparing the experimental results to calculations based on the time-dependent Schrödinger equation.

Publication Source (Journal or Book title)

Optics Letters

First Page

3357

Last Page

3360

Share

COinS