Document Type

Article

Publication Date

1-1-2000

Abstract

We introduce a generalized similarity analysis which grants a qualitative description of the localised solutions of any nonlinear differential equation. This procedure provides relations between amplitude, width, and velocity of the solutions, and it is shown to be useful in analysing nonlinear structures like solitons, dublets, triplets, compact supported solitons and other patterns. We also introduce kink-antikink compact solutions for a nonlinear-nonlinear dispersion equation, and we construct a basis of finite wavelength functions having self-similar properties.

Publication Source (Journal or Book title)

International Journal of Modern Physics E

First Page

263

Last Page

278

Share

COinS