Authors

B. Abbott, California Institute of Technology
R. Abbott, LIGO Livingston
R. Adhikari, LIGO, Massachusetts Institute of Technology
A. Ageev, Lomonosov Moscow State University
B. Allen, University of Wisconsin-Milwaukee
R. Amin, University of Florida
S. B. Anderson, California Institute of Technology
W. G. Anderson, University of Texas at Brownsville and Texas Southmost College
M. Araya, California Institute of Technology
H. Armandula, California Institute of Technology
F. Asiri, California Institute of Technology
P. Aufmuth, Gottfried Wilhelm Leibniz Universität Hannover
C. Aulbert, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
S. Babak, Cardiff University
R. Balasubramanian, Cardiff University
S. Ballmer, LIGO, Massachusetts Institute of Technology
B. C. Barish, California Institute of Technology
D. Barker, LIGO Hanford
C. Barker-Patton, LIGO Hanford
M. Barnes, California Institute of Technology
B. Barr, University of Glasgow
M. A. Barton, California Institute of Technology
K. Bayer, LIGO, Massachusetts Institute of Technology
R. Beausoleil, Stanford University
K. Belczynski, Northwestern University
R. Bennett, University of Glasgow
S. J. Berukoff, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
J. Betzwieser, LIGO, Massachusetts Institute of Technology
B. Bhawal, California Institute of Technology
I. A. Bilenko, Lomonosov Moscow State University
G. Billingsley, California Institute of Technology
E. Black, California Institute of Technology
K. Blackburn, California Institute of Technology

Document Type

Article

Publication Date

1-1-2004

Abstract

We report on a search for gravitational waves from coalescing compact binary systems in the Milky Way and the Magellanic Clouds. The analysis uses data taken by two of the three LIGO interferometers during the first LIGO science run and illustrates a method of setting upper limits on inspiral event rates using interferometer data. The analysis pipeline is described with particular attention to data selection and coincidence between the two interferometers. We establish an observational upper limit of [Formula Presented] per year per Milky Way Equivalent Galaxy (MWEG), with 90% confidence, on the coalescence rate of binary systems in which each component has a mass in the range [Formula Presented] © 2004 The American Physical Society.

Publication Source (Journal or Book title)

Physical Review D - Particles, Fields, Gravitation and Cosmology

Share

COinS