Authors

B. Abbott, California Institute of Technology
R. Abbott, LIGO Livingston
R. Adhikari, Massachusetts Institute of Technology
A. Ageev, Lomonosov Moscow State University
B. Allen, University of Wisconsin-Milwaukee
R. Amin, University of Florida
S. B. Anderson, California Institute of Technology
W. G. Anderson, University of Texas at Brownsville and Texas Southmost College
M. Araya, California Institute of Technology
H. Armandula, California Institute of Technology
M. Ashley, Pennsylvania State University
F. Asiri, California Institute of Technology
P. Aufmuth, Gottfried Wilhelm Leibniz Universität Hannover
C. Aulbert, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
S. Babak, Cardiff University
R. Balasubramanian, Cardiff University
S. Ballmer, Massachusetts Institute of Technology
B. C. Barish, California Institute of Technology
C. Barker, LIGO Hanford
D. Barker, LIGO Livingston
M. Barnes, California Institute of Technology
B. Barr, University of Glasgow
M. A. Barton, California Institute of Technology
K. Bayer, Massachusetts Institute of Technology
R. Beausoleil, Stanford University
K. Belczynski, Northwestern University
R. Bennett, University of Glasgow
S. J. Berukoff, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
J. Betzwieser, Massachusetts Institute of Technology
B. Bhawal, California Institute of Technology
I. A. Bilenko, Lomonosov Moscow State University
G. Billingsley, California Institute of Technology
E. Black, California Institute of Technology

Document Type

Article

Publication Date

10-15-2005

Abstract

We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole binary coalescence with component masses in the range 0.2-1.0M. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing nonspinning black holes with masses in the range 0.2-1.0M, we place an observational upper limit on the rate of primordial black hole coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence. © 2005 The American Physical Society.

Publication Source (Journal or Book title)

Physical Review D - Particles, Fields, Gravitation and Cosmology

Share

COinS