Authors

B. Abbott, California Institute of Technology
R. Abbott, California Institute of Technology
R. Adhikari, California Institute of Technology
J. Agresti, California Institute of Technology
P. Ajith, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
B. Allen, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
R. Amin, Louisiana State University
S. B. Anderson, California Institute of Technology
W. G. Anderson, University of Wisconsin-Milwaukee
M. Arain, University of Florida
M. Araya, California Institute of Technology
H. Armandula, California Institute of Technology
M. Ashley, The Australian National University
S. Aston, University of Birmingham
P. Aufmuth, Gottfried Wilhelm Leibniz Universität Hannover
C. Aulbert, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
S. Babak, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
S. Ballmer, California Institute of Technology
H. Bantilan, Carleton College, USA
B. C. Barish, California Institute of Technology
C. Barker, LIGO Hanford
D. Barker, LIGO Hanford
B. Barr, University of Glasgow
P. Barriga, The University of Western Australia
M. A. Barton, University of Glasgow
K. Bayer, Massachusetts Institute of Technology
K. Belczynski, Northwestern University
J. Betzwieser, Massachusetts Institute of Technology
P. T. Beyersdorf, San Jose State University
B. Bhawal, California Institute of Technology
I. A. Bilenko, Lomonosov Moscow State University
G. Billingsley, California Institute of Technology
R. Biswas, University of Wisconsin-Milwaukee

Document Type

Article

Publication Date

1-1-2007

Abstract

The fourth science run of the LIGO and GEO 600 gravitational-wave detectors, carried out in early 2005, collected data with significantly lower noise than previous science runs. We report on a search for short-duration gravitational-wave bursts with arbitrary waveform in the 64-1600 Hz frequency range appearing in all three LIGO interferometers. Signal consistency tests, data quality cuts and auxiliary-channel vetoes are applied to reduce the rate of spurious triggers. No gravitational-wave signals are detected in 15.5 days of live observation time; we set a frequentist upper limit of 0.15 day-1 (at 90% confidence level) on the rate of bursts with large enough amplitudes to be detected reliably. The amplitude sensitivity of the search, characterized using Monte Carlo simulations, is several times better than that of previous searches. We also provide rough estimates of the distances at which representative supernova and binary black hole merger signals could be detected with 50% efficiency by this analysis. © 2007 IOP Publishing Ltd.

Publication Source (Journal or Book title)

Classical and Quantum Gravity

First Page

5343

Last Page

5369

Share

COinS