Authors

J. Abadie, California Institute of TechnologyFollow
B. P. Abbott, California Institute of TechnologyFollow
R. Abbott, California Institute of TechnologyFollow
M. Abernathy, University of GlasgowFollow
T. Accadia, Université Savoie Mont BlancFollow
F. Acernese, Istituto Nazionale di Fisica Nucleare, Sezione di NapoliFollow
C. Adams, LIGO LivingstonFollow
R. Adhikari, California Institute of TechnologyFollow
P. Ajith, California Institute of TechnologyFollow
B. Allen, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)Follow
G. S. Allen, Stanford UniversityFollow
E. Amador Ceron, University of Wisconsin-MilwaukeeFollow
R. S. Amin, Louisiana State UniversityFollow
S. B. Anderson, California Institute of TechnologyFollow
W. G. Anderson, University of Wisconsin-MilwaukeeFollow
F. Antonucci, Istituto Nazionale di Fisica Nucleare - INFN
M. A. Arain, University of Florida
M. C. Araya, California Institute of Technology
M. Aronsson, California Institute of Technology
Y. Aso, California Institute of Technology
S. M. Aston, University of Birmingham
P. Astone, Istituto Nazionale di Fisica Nucleare - INFN
D. Atkinson, LIGO Hanford
P. Aufmuth, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
C. Aulbert, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
S. Babak, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
P. Baker, Montana State University
G. Ballardin, European Gravitational Observatory (EGO)
T. Ballinger, Carleton College, USA
S. Ballmer, California Institute of Technology
D. Barker, LIGO Hanford
S. Barnum, Massachusetts Institute of Technology
F. Barone, Istituto Nazionale di Fisica Nucleare, Sezione di Napoli

Document Type

Article

Publication Date

6-6-2011

Abstract

We present the first modeled search for gravitational waves using the complete binary black-hole gravitational waveform from inspiral through the merger and ringdown for binaries with negligible component spin. We searched approximately 2 years of LIGO data, taken between November 2005 and September 2007, for systems with component masses of 1-99Mȯ and total masses of 25-100Mȯ. We did not detect any plausible gravitational-wave signals but we do place upper limits on the merger rate of binary black holes as a function of the component masses in this range. We constrain the rate of mergers for 19Mȯ≤m1, m 2≤28Mȯ binary black-hole systems with negligible spin to be no more than 2.0Mpc-3Myr-1 at 90% confidence. © 2011 American Physical Society.

Publication Source (Journal or Book title)

Physical Review D - Particles, Fields, Gravitation and Cosmology

Share

COinS