Authors

J. Aasi, California Institute of TechnologyFollow
J. Abadie, California Institute of TechnologyFollow
B. P. Abbott, California Institute of TechnologyFollow
R. Abbott, California Institute of TechnologyFollow
T. D. Abbott, California State University, FullertonFollow
M. Abernathy, University of GlasgowFollow
T. Accadia, Université Savoie Mont BlancFollow
F. Acernese, Istituto Nazionale di Fisica Nucleare, Sezione di NapoliFollow
C. Adams, LIGO LivingstonFollow
T. Adams, Cardiff UniversityFollow
P. Addesso, Università degli Studi dell'AquilaFollow
R. Adhikari, California Institute of TechnologyFollow
C. Affeldt, Istituto Nazionale di Fisica Nucleare, Sezione di NapoliFollow
M. Agathos, Gottfried Wilhelm Leibniz Universität HannoverFollow
K. Agatsuma, Vrije Universiteit AmsterdamFollow
P. Ajith, California Institute of TechnologyFollow
B. Allen, Istituto Nazionale di Fisica Nucleare, Sezione di NapoliFollow
A. Allocca, University of Wisconsin-MilwaukeeFollow
E. Amador Ceron, National Institutes of Natural Sciences - National Astronomical Observatory of Japan
D. Amariutei, Università degli Studi di SienaFollow
S. B. Anderson, California Institute of TechnologyFollow
W. G. Anderson, National Institutes of Natural Sciences - National Astronomical Observatory of JapanFollow
K. Arai, California Institute of Technology
M. C. Araya, California Institute of Technology
S. Ast, Istituto Nazionale di Fisica Nucleare, Sezione di Napoli
S. M. Aston, LIGO Livingston
P. Astone, University of Florida
D. Atkinson, Sapienza Università di Roma
P. Aufmuth, Istituto Nazionale di Fisica Nucleare, Sezione di Napoli
C. Aulbert, Istituto Nazionale di Fisica Nucleare, Sezione di Napoli
B. E. Aylott, LIGO Hanford
S. Babak, University of Birmingham
P. Baker, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)

Document Type

Article

Publication Date

8-7-2012

Abstract

Between 2007 and 2010 Virgo collected data in coincidence with the LIGO and GEO gravitational-wave (GW) detectors. These data have been searched for GWs emitted by cataclysmic phenomena in the universe, by non-axisymmetric rotating neutron stars or from a stochastic background in the frequency band of the detectors. The sensitivity of GW searches is limited by noise produced by the detector or its environment. It is therefore crucial to characterize the various noise sources in a GW detector. This paper reviews the Virgo detector noise sources, noise propagation, and conversion mechanisms which were identified in the three first Virgo observing runs. In many cases, these investigations allowed us to mitigate noise sources in the detector, or to selectively flag noise events and discard them from the data. We present examples from the joint LIGO-GEO-Virgo GW searches to show how well noise transients and narrow spectral lines have been identified and excluded from the Virgo data. We also discuss how detector characterization can improve the astrophysical reach of GW searches. © 2012 IOP Publishing Ltd.

Publication Source (Journal or Book title)

Classical and Quantum Gravity

Share

COinS