Authors

J. Aasi, California Institute of Technology
J. Abadie, California Institute of Technology
B. P. Abbott, California Institute of Technology
R. Abbott, California Institute of Technology
T. D. Abbott, California State University, Fullerton
M. Abernathy, University of Glasgow
T. Accadia, Université Savoie Mont Blanc
F. Acernese, Istituto Nazionale di Fisica Nucleare, Sezione di Napoli
C. Adams, LIGO Livingston
T. Adams, Cardiff University
P. Addesso, Università degli Studi dell'Aquila
R. Adhikari, California Institute of Technology
C. Affeldt, Istituto Nazionale di Fisica Nucleare, Sezione di Napoli
M. Agathos, Gottfried Wilhelm Leibniz Universität Hannover
K. Agatsuma, Vrije Universiteit Amsterdam
P. Ajith, California Institute of Technology
B. Allen, Istituto Nazionale di Fisica Nucleare, Sezione di Napoli
A. Allocca, University of Wisconsin-Milwaukee
E. Amador Ceron, National Institutes of Natural Sciences - National Astronomical Observatory of Japan
D. Amariutei, Università degli Studi di Siena
S. B. Anderson, California Institute of Technology
W. G. Anderson, National Institutes of Natural Sciences - National Astronomical Observatory of Japan
K. Arai, California Institute of Technology
M. C. Araya, California Institute of Technology
S. Ast, Istituto Nazionale di Fisica Nucleare, Sezione di Napoli
S. M. Aston, LIGO Livingston
P. Astone, University of Florida
D. Atkinson, Sapienza Università di Roma
P. Aufmuth, Istituto Nazionale di Fisica Nucleare, Sezione di Napoli
C. Aulbert, Istituto Nazionale di Fisica Nucleare, Sezione di Napoli
B. E. Aylott, LIGO Hanford
S. Babak, University of Birmingham
P. Baker, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)

Document Type

Article

Publication Date

8-7-2012

Abstract

Between 2007 and 2010 Virgo collected data in coincidence with the LIGO and GEO gravitational-wave (GW) detectors. These data have been searched for GWs emitted by cataclysmic phenomena in the universe, by non-axisymmetric rotating neutron stars or from a stochastic background in the frequency band of the detectors. The sensitivity of GW searches is limited by noise produced by the detector or its environment. It is therefore crucial to characterize the various noise sources in a GW detector. This paper reviews the Virgo detector noise sources, noise propagation, and conversion mechanisms which were identified in the three first Virgo observing runs. In many cases, these investigations allowed us to mitigate noise sources in the detector, or to selectively flag noise events and discard them from the data. We present examples from the joint LIGO-GEO-Virgo GW searches to show how well noise transients and narrow spectral lines have been identified and excluded from the Virgo data. We also discuss how detector characterization can improve the astrophysical reach of GW searches. © 2012 IOP Publishing Ltd.

Publication Source (Journal or Book title)

Classical and Quantum Gravity

Share

COinS