Authors

J. Aasi, California Institute of TechnologyFollow
J. Abadie, California Institute of TechnologyFollow
B. P. Abbott, California Institute of TechnologyFollow
R. Abbott, California Institute of TechnologyFollow
T. D. Abbott, California State University, FullertonFollow
M. Abernathy, University of GlasgowFollow
T. Accadia, Université Savoie Mont BlancFollow
F. Acernese, Istituto Nazionale di Fisica Nucleare, Sezione di NapoliFollow
C. Adams, LIGO LivingstonFollow
T. Adams, Cardiff UniversityFollow
P. Addesso, Università degli Studi di SalernoFollow
R. Adhikari, California Institute of TechnologyFollow
C. Affeldt, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)Follow
M. Agathos, FOM-Institute of Subatomic Physics - NIKHEFFollow
K. Agatsuma, National Institutes of Natural Sciences - National Astronomical Observatory of JapanFollow
P. Ajith, California Institute of TechnologyFollow
B. Allen, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)Follow
A. Allocca, Southeastern Louisiana UniversityFollow
E. Amador Ceron, University of Wisconsin-MilwaukeeFollow
D. Amariutei, University of FloridaFollow
S. B. Anderson, California Institute of TechnologyFollow
W. G. Anderson, University of Wisconsin-MilwaukeeFollow
K. Arai, California Institute of Technology
M. C. Araya, California Institute of Technology
S. Ast, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
S. M. Aston, LIGO Livingston
P. Astone, University of Washington
D. Atkinson, LIGO Hanford
P. Aufmuth, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
C. Aulbert, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
B. E. Aylott, University of Birmingham
S. Babak, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
P. Baker, Montana State University

Document Type

Article

Publication Date

1-23-2013

Abstract

We report a search for gravitational waves from the inspiral, merger and ringdown of binary black holes (BBH) with total mass between 25 and 100 solar masses, in data taken at the LIGO and Virgo observatories between July 7, 2009 and October 20, 2010. The maximum sensitive distance of the detectors over this period for a (20,20)M⊙ coalescence was 300 Mpc. No gravitational wave signals were found. We thus report upper limits on the astrophysical coalescence rates of BBH as a function of the component masses for nonspinning components, and also evaluate the dependence of the search sensitivity on component spins aligned with the orbital angular momentum. We find an upper limit at 90% confidence on the coalescence rate of BBH with nonspinning components of mass between 19 and 28M ⊙ of 3.3×10-7 mergers Mpc -3 yr-1. © 2013 American Physical Society.

Publication Source (Journal or Book title)

Physical Review D - Particles, Fields, Gravitation and Cosmology

Share

COinS