Authors

J. Aasi, California Institute of Technology
J. Abadie, California Institute of Technology
B. P. Abbott, California Institute of Technology
R. Abbott, California Institute of Technology
T. D. Abbott, Louisiana State University
M. R. Abernathy, California Institute of Technology
C. Adams, LIGO Livingston
T. Adams, Cardiff University
P. Addesso, Università degli Studi del Sannio
R. X. Adhikari, California Institute of Technology
C. Affeldt, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
O. D. Aguiar, Instituto Nacional de Pesquisas Espaciais
P. Ajith, California Institute of Technology
B. Allen, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
E. Amador Ceron, University of Wisconsin-Milwaukee
D. Amariutei, University of Florida
S. B. Anderson, California Institute of Technology
W. G. Anderson, University of Wisconsin-Milwaukee
K. Arai, California Institute of Technology
M. C. Araya, California Institute of Technology
C. Arceneaux, University of Mississippi
S. Ast, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
S. M. Aston, LIGO Livingston
D. Atkinson, LIGO Hanford
P. Aufmuth, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
C. Aulbert, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
L. Austin, California Institute of Technology
B. E. Aylott, University of Birmingham
S. Babak, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
P. T. Baker, Montana State University
S. Ballmer, Syracuse University
Y. Bao, University of Florida
J. C. Barayoga, California Institute of Technology

Document Type

Article

Publication Date

8-1-2013

Abstract

Nearly a century after Einstein first predicted the existence of gravitational waves, a global network of Earth-based gravitational wave observatories1-4 is seeking to directly detect this faint radiation using precision laser interferometry. Photon shot noise, due to the quantum nature of light, imposes a fundamental limit on the attometre-level sensitivity of the kilometre-scale Michelson interferometers deployed for this task. Here, we inject squeezed states to improve the performance of one of the detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) beyond the quantum noise limit, most notably in the frequency region down to 150 Hz, critically important for several astrophysical sources, with no deterioration of performance observed at any frequency. With the injection of squeezed states, this LIGO detector demonstrated the best broadband sensitivity to gravitational waves ever achieved, with important implications for observing the gravitational-wave Universe with unprecedented sensitivity. © 2013 Macmillan Publishers Limited.

Publication Source (Journal or Book title)

Nature Photonics

First Page

613

Last Page

619

Share

COinS