Authors

J. Aasi, California Institute of TechnologyFollow
J. Abadie, California Institute of TechnologyFollow
B. P. Abbott, California Institute of TechnologyFollow
R. Abbott, California Institute of TechnologyFollow
T. Abbott, Louisiana State UniversityFollow
M. R. Abernathy, California Institute of TechnologyFollow
T. Accadia, Université Savoie Mont BlancFollow
F. Acernese, Istituto Nazionale di Fisica Nucleare, Sezione di NapoliFollow
C. Adams, LIGO LivingstonFollow
T. Adams, Cardiff UniversityFollow
R. X. Adhikari, California Institute of TechnologyFollow
C. Affeldt, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)Follow
M. Agathos, FOM-Institute of Subatomic Physics - NIKHEFFollow
N. Aggarwal, LIGO, Massachusetts Institute of TechnologyFollow
O. D. Aguiar, Instituto Nacional de Pesquisas EspaciaisFollow
P. Ajith, California Institute of TechnologyFollow
B. Allen, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)Follow
A. Allocca, Istituto Nazionale di Fisica Nucleare, Sezione di PisaFollow
E. Amador Ceron, University of Wisconsin-Milwaukee
D. Amariutei, University of FloridaFollow
R. A. Anderson, California Institute of TechnologyFollow
S. B. Anderson, California Institute of TechnologyFollow
W. G. Anderson, University of Wisconsin-MilwaukeeFollow
K. Arai, California Institute of Technology
M. C. Araya, California Institute of Technology
C. Arceneaux, University of Mississippi
J. Areeda, California State University, Fullerton
S. Ast, Gottfried Wilhelm Leibniz Universität Hannover
S. M. Aston, LIGO Livingston
P. Astone, Istituto Nazionale di Fisica Nucleare - INFN
P. Aufmuth, Gottfried Wilhelm Leibniz Universität Hannover
C. Aulbert, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
L. Austin, California Institute of Technology

Document Type

Article

Publication Date

4-21-2014

Abstract

We report on an all-sky search for periodic gravitational waves in the frequency range 50-1000 Hz with the first derivative of frequency in the range -8.9 × 10-10 Hz s-1 to zero in two years of data collected during LIGO's fifth science run. Our results employ a Hough transform technique, introducing a χ2 test and analysis of coincidences between the signal levels in years 1 and 2 of observations that offers a significant improvement in the product of strain sensitivity with compute cycles per data sample compared to previously published searches. Since our search yields no surviving candidates, we present results taking the form of frequency dependent, 95% confidence upper limits on the strain amplitude h0. The most stringent upper limit from year 1 is 1.0 × 10-24 in the 158.00-158.25 Hz band. In year 2, the most stringent upper limit is 8.9 × 10-25 in the 146.50-146.75 Hz band. This improved detection pipeline, which is computationally efficient by at least two orders of magnitude better than our flagship Einstein@Home search, will be important for 'quick-look' searches in the Advanced LIGO and Virgo detector era. © 2014 IOP Publishing Ltd.

Publication Source (Journal or Book title)

Classical and Quantum Gravity

Share

COinS