Authors

J. Aasi, California Institute of TechnologyFollow
B. P. Abbott, California Institute of TechnologyFollow
R. Abbott, California Institute of TechnologyFollow
T. Abbott, Louisiana State UniversityFollow
M. R. Abernathy, California Institute of TechnologyFollow
F. Acernese, Istituto Nazionale di Fisica Nucleare, Sezione di NapoliFollow
K. Ackley, University of FloridaFollow
C. Adams, LIGO LivingstonFollow
T. Adams, Cardiff UniversityFollow
P. Addesso, Università degli Studi di SalernoFollow
R. X. Adhikari, California Institute of TechnologyFollow
C. Affeldt, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)Follow
M. Agathos, FOM-Institute of Subatomic Physics - NIKHEFFollow
N. Aggarwal, LIGO, Massachusetts Institute of TechnologyFollow
O. D. Aguiar, Instituto Nacional de Pesquisas EspaciaisFollow
A. Ain, Inter-University Centre for Astronomy and Astrophysics IndiaFollow
P. Ajith, Tata Institute of Fundamental Research, MumbaiFollow
A. Alemic, Syracuse University
B. Allen, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)Follow
A. Allocca, Istituto Nazionale di Fisica Nucleare, Sezione di PisaFollow
D. Amariutei, University of FloridaFollow
M. Andersen, Stanford UniversityFollow
R. Anderson, California Institute of TechnologyFollow
S. B. Anderson, California Institute of TechnologyFollow
W. G. Anderson, University of Wisconsin-MilwaukeeFollow
K. Arai, California Institute of Technology
M. C. Araya, California Institute of Technology
C. Arceneaux, University of Mississippi
J. Areeda, California State University, Fullerton
S. M. Aston, LIGO Livingston
P. Astone, Istituto Nazionale di Fisica Nucleare - INFN
P. Aufmuth, Gottfried Wilhelm Leibniz Universität Hannover
C. Aulbert, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)

Document Type

Article

Publication Date

5-27-2014

Abstract

We report results from a search for gravitational waves produced by perturbed intermediate mass black holes (IMBH) in data collected by LIGO and Virgo between 2005 and 2010. The search was sensitive to astrophysical sources that produced damped sinusoid gravitational wave signals, also known as ringdowns, with frequency 50≤f0/Hz≤2000 and decay timescale 0.0001 τ/s 0.1 characteristic of those produced in mergers of IMBH pairs. No significant gravitational wave candidate was detected. We report upper limits on the astrophysical coalescence rates of IMBHs with total binary mass 50≤M/M ≤450 and component mass ratios of either 1:1 or 4:1. For systems with total mass 100≤M/M ≤150, we report a 90% confidence upper limit on the rate of binary IMBH mergers with nonspinning and equal mass components of 6.9×10-8Mpc-3yr-1. We also report a rate upper limit for ringdown waveforms from perturbed IMBHs, radiating 1% of their mass as gravitational waves in the fundamental, =m=2, oscillation mode, that is nearly three orders of magnitude more stringent than previous results. © 2014 American Physical Society.

Publication Source (Journal or Book title)

Physical Review D - Particles, Fields, Gravitation and Cosmology

Share

COinS