Authors

B. P. Abbott, California Institute of TechnologyFollow
R. Abbott, California Institute of TechnologyFollow
T. D. Abbott, Louisiana State UniversityFollow
F. Acernese, Università degli Studi di SalernoFollow
K. Ackley, University of FloridaFollow
C. Adams, LIGO LivingstonFollow
T. Adams, Université Savoie Mont BlancFollow
P. Addesso, Università degli Studi del SannioFollow
R. X. Adhikari, California Institute of TechnologyFollow
V. B. Adya, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)Follow
C. Affeldt, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)Follow
M. Afrough, University of Mississippi
B. Agarwal, University of Illinois Urbana-ChampaignFollow
M. Agathos, University of CambridgeFollow
K. Agatsuma, FOM-Institute of Subatomic Physics - NIKHEFFollow
N. Aggarwal, LIGO, Massachusetts Institute of TechnologyFollow
O. D. Aguiar, Instituto Nacional de Pesquisas EspaciaisFollow
L. Aiello, Gran Sasso Science InstituteFollow
A. Ain, Inter-University Centre for Astronomy and Astrophysics IndiaFollow
P. Ajith, Tata Institute of Fundamental Research, MumbaiFollow
B. Allen, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)Follow
G. Allen, University of Illinois Urbana-ChampaignFollow
A. Allocca, Università di PisaFollow
P. A. Altin, The Australian National UniversityFollow
A. Amato, IN2P3 Institut National de Physique Nucleaire et de Physique des ParticulesFollow
A. Ananyeva, California Institute of TechnologyFollow
S. B. Anderson, California Institute of TechnologyFollow
W. G. Anderson, University of Wisconsin-MilwaukeeFollow
S. Antier, Laboratoire de l'Accélérateur Linéaire
S. Appert, California Institute of Technology
K. Arai, California Institute of Technology
M. C. Araya, California Institute of Technology
J. S. Areeda, California State University, Fullerton

Document Type

Article

Publication Date

6-1-2017

Abstract

We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10 11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. The inferred component black hole masses are 31.2-6.0+8.4M' and 19.4-5.9+5.3M (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, χeff=-0.12-0.30+0.21. This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is 880-390+450 Mpc corresponding to a redshift of z=0.18-0.07+0.08. We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to mg≤7.7×10-23 eV/c2. In all cases, we find that GW170104 is consistent with general relativity.

Publication Source (Journal or Book title)

Physical Review Letters

Share

COinS