Authors

B. P. Abbott, California Institute of TechnologyFollow
R. Abbott, California Institute of TechnologyFollow
T. D. Abbott, Louisiana State UniversityFollow
S. Abraham, Inter-University Centre for Astronomy and Astrophysics IndiaFollow
F. Acernese, Università degli Studi di SalernoFollow
K. Ackley, Monash UniversityFollow
A. Adams, Christopher Newport UniversityFollow
C. Adams, LIGO LivingstonFollow
R. X. Adhikari, California Institute of TechnologyFollow
V. B. Adya, The Australian National UniversityFollow
C. Affeldt, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)Follow
M. Agathos, Friedrich-Schiller-Universität JenaFollow
K. Agatsuma, University of BirminghamFollow
N. Aggarwal, LIGO, Massachusetts Institute of TechnologyFollow
O. D. Aguiar, Instituto Nacional de Pesquisas EspaciaisFollow
L. Aiello, Gran Sasso Science InstituteFollow
A. Ain, Inter-University Centre for Astronomy and Astrophysics IndiaFollow
P. Ajith, Tata Institute of Fundamental Research, MumbaiFollow
G. Allen, University of Illinois Urbana-ChampaignFollow
A. Allocca, Università di PisaFollow
M. A. Aloy, Universitat de València
P. A. Altin, The Australian National UniversityFollow
A. Amato, IN2P3 Institut National de Physique Nucleaire et de Physique des ParticulesFollow
S. Anand, California Institute of TechnologyFollow
A. Ananyeva, California Institute of TechnologyFollow
S. B. Anderson, California Institute of TechnologyFollow
W. G. Anderson, University of Wisconsin-MilwaukeeFollow
S. V. Angelova, University of Strathclyde
S. Antier, APC - AstroParticule et Cosmologie
S. Appert, California Institute of Technology
K. Arai, California Institute of Technology
M. C. Araya, California Institute of Technology
J. S. Areeda, California State University, Fullerton

Document Type

Article

Publication Date

9-30-2019

Abstract

Gravitational-wave astronomy has been firmly established with the detection of gravitational waves from the merger of ten stellar-mass binary black holes and a neutron star binary. This paper reports on the all-sky search for gravitational waves from intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. The search uses three independent algorithms: two based on matched filtering of the data with waveform templates of gravitational-wave signals from compact binaries, and a third, model-independent algorithm that employs no signal model for the incoming signal. No intermediate mass black hole binary event is detected in this search. Consequently, we place upper limits on the merger rate density for a family of intermediate mass black hole binaries. In particular, we choose sources with total masses M=m1+m2ϵ[120,800] M and mass ratios q=m2/m1ϵ[0.1,1.0]. For the first time, this calculation is done using numerical relativity waveforms (which include higher modes) as models of the real emitted signal. We place a most stringent upper limit of 0.20 Gpc-3 yr-1 (in comoving units at the 90% confidence level) for equal-mass binaries with individual masses m1,2=100 M and dimensionless spins χ1,2=0.8 aligned with the orbital angular momentum of the binary. This improves by a factor of ∼5 that reported after Advanced LIGO's first observing run.

Publication Source (Journal or Book title)

Physical Review D

Share

COinS