Authors

B. P. Abbott, California Institute of Technology
R. Abbott, California Institute of Technology
T. D. Abbott, Louisiana State University
S. Abraham, Inter-University Centre for Astronomy and Astrophysics India
F. Acernese, Università degli Studi di Salerno
K. Ackley, Monash University
C. Adams, LIGO Livingston
V. B. Adya, The Australian National University
C. Affeldt, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
M. Agathos, Friedrich-Schiller-Universität Jena
K. Agatsuma, University of Birmingham
N. Aggarwal, LIGO, Massachusetts Institute of Technology
O. D. Aguiar, Instituto Nacional de Pesquisas Espaciais
L. Aiello, Gran Sasso Science Institute
A. Ain, Inter-University Centre for Astronomy and Astrophysics India
P. Ajith, Tata Institute of Fundamental Research, Mumbai
G. Allen, University of Illinois Urbana-Champaign
A. Allocca, Università di Pisa
M. A. Aloy, Universitat de València
P. A. Altin, The Australian National University
A. Amato, IN2P3 Institut National de Physique Nucleaire et de Physique des Particules
S. Anand, California Institute of Technology
A. Ananyeva, California Institute of Technology
S. B. Anderson, California Institute of Technology
W. G. Anderson, University of Wisconsin-Milwaukee
S. V. Angelova, University of Strathclyde
S. Antier, APC - AstroParticule et Cosmologie
S. Appert, California Institute of Technology
K. Arai, California Institute of Technology
M. C. Araya, California Institute of Technology
J. S. Areeda, California State University, Fullerton
M. Arène, APC - AstroParticule et Cosmologie
N. Arnaud, Laboratoire de l'Accélérateur Linéaire

Document Type

Article

Publication Date

4-15-2020

Abstract

We present the results from a search for gravitational-wave transients associated with core-collapse supernovae observed within a source distance of approximately 20 Mpc during the first and second observing runs of Advanced LIGO and Advanced Virgo. No significant gravitational-wave candidate was detected. We report the detection efficiencies as a function of the distance for waveforms derived from multidimensional numerical simulations and phenomenological extreme emission models. The sources with neutrino-driven explosions are detectable at the distances approaching 5 kpc, and for magnetorotationally driven explosions the distances are up to 54 kpc. However, waveforms for extreme emission models are detectable up to 28 Mpc. For the first time, the gravitational-wave data enabled us to exclude part of the parameter spaces of two extreme emission models with confidence up to 83%, limited by coincident data coverage. Besides, using ad hoc harmonic signals windowed with Gaussian envelopes, we constrained the gravitational-wave energy emitted during core collapse at the levels of 4.27×10-4 M·c2 and 1.28×10-1 M·c2 for emissions at 235 and 1304 Hz, respectively. These constraints are 2 orders of magnitude more stringent than previously derived in the corresponding analysis using initial LIGO, initial Virgo, and GEO 600 data.

Publication Source (Journal or Book title)

Physical Review D

Share

COinS