Document Type
Article
Publication Date
7-1-2020
Abstract
Squeezed light—light with quantum noise lower than shot noise in some quadratures and higher in others—can be used to improve the sensitivity of precision measurements. In particular, squeezed light sources based on nonlinear optical crystals are being used to improve the sensitivity of gravitational wave detectors. In optomechanical squeezers, the radiation-pressure-driven interaction of a coherent light field with a mechanical oscillator induces correlations between the amplitude and phase quadratures of the light, which induce the squeezing. However, thermally driven fluctuations of the mechanical oscillator’s position make it difficult to observe the quantum correlations at room temperature and at low frequencies. Here, we present a measurement of optomechanically squeezed light, performed at room temperature in a broad band near the audio-frequency regions relevant to gravitational wave detectors. We observe sub-Poissonian quantum noise in a frequency band of 30–70 kHz with a maximum reduction of 0.7 ± 0.1 dB below shot noise at 45 kHz. We present two independent methods of measuring this squeezing, one of which does not rely on the calibration of shot noise.
Publication Source (Journal or Book title)
Nature Physics
First Page
784
Last Page
788
Recommended Citation
Aggarwal, N., Cullen, T., Cripe, J., Cole, G., Lanza, R., Libson, A., Follman, D., Heu, P., Corbitt, T., & Mavalvala, N. (2020). Room-temperature optomechanical squeezing. Nature Physics, 16 (7), 784-788. https://doi.org/10.1038/s41567-020-0877-x