Pilot-scale experimental study and mathematical modeling of buoyant settling of immiscible heavy fluid in mud to stop annular-gas migration above leaking cement

Document Type

Conference Proceeding

Publication Date

2-1-2018

Abstract

Annular casing pressure (ACP) is defined as the accumulated pressure on the casing head. If pressure returns after bleed-down, then the casing annulus is said to be showing sustained casing pressure (SCP). SCP is caused by late gas migration in the annular-fluid column above the top of leaking cement and may result in atmospheric emissions or underground blowouts. Removal of SCP is required in places where SCP is regulated, particularly before the well-plugging and abandonment operations. Annular-intervention methods for SCP removal, which are less expensive than the conventional downhole-intervention methods, typically involve injecting heavy fluid into the affected annulus that would displace the annular fluid (AF), balance the pressure at the top of cement, and stop the gas leakage. Previous studies stated that the use of immiscible combinations of two fluids is more effective for the purpose; however, inattentive applications may result in excessive use of heavy fluid. In this study, a 20-ft carbon-steel pilot-well annulus was manufactured and used for displacement experiments with various water-based drilling muds and heavy fluids with different properties. Pressure-change data were collected from four different levels of the annulus, and volumes of fluids going in and out of the annulus were measured. Experiments indicated the formation of a mixture zone that would build bottoms up and expand during ongoing displacement. The proposed pressure- buildup model suggests an exponential distribution of density of this zone, and shows its high dependency on fluids' properties and injection rate. The mathematical models were also converted into dimensionless process measures and proposed for use in real-well applications. The study demonstrates the viability and recommends the correct application of the method.

Publication Source (Journal or Book title)

SPE Journal

First Page

186

Last Page

204

This document is currently not available here.

Share

COinS