Experimental investigation of cooling performance of metal-based microchannels

Document Type

Article

Publication Date

5-1-2010

Abstract

Metal-based microchannel heat exchangers (MHEs) are of current interest due to the combination of high heat transfer performance and improved mechanical integrity. Efficient methods for fabrication and assembly of functional metal-based MHEs are essential to ensure the economic viability of such devices. Al- and Cu-based high-aspect-ratio microscale structures (HARMS) have been fabricated through molding replication using metallic mold inserts. Such metallic HARMS were assembled through eutectic bonding to form Al- and Cu-based MHEs, on which heat transfer tests were conducted to determine the overall cooling rate and time constants. Electrically heated Cu blocks were placed outside the MHEs and provided a constant flux, and water flowing within the microchannels acted as the coolant. Experimental results show a great influence of the type of metal, flow rate, and the surrounding conditions on the overall cooling performance of the MHEs.

Publication Source (Journal or Book title)

Heat Transfer Engineering

First Page

485

Last Page

494

This document is currently not available here.

Share

COinS