A new tracking controller for neuromuscular electrical stimulation under input delays: Case study in prediction
Document Type
Conference Proceeding
Publication Date
1-1-2014
Abstract
We announce a new tracking controller for neuromuscular electrical stimulation, which is an emerging technology that artificially stimulates skeletal muscles to help restore functionality to human limbs. The novelty of our work is that we prove that the tracking error globally asymptotically and locally exponentially converges to zero for any positive input delay, coupled with our ability to satisfy a state constraint imposed by the physical system. Also, our controller only requires sampled measurements of the states instead of continuous measurements, and allows perturbed sampling schedules, which can be important for practical purposes. Our work is based on a new method for constructing predictor maps for a large class of time-varying systems, which is of independent interest. © 2014 American Automatic Control Council.
Publication Source (Journal or Book title)
Proceedings of the American Control Conference
First Page
4186
Last Page
4191
Recommended Citation
Karafyllis, I., Malisoff, M., De Queiroz, M., Krstic, M., & Yang, R. (2014). A new tracking controller for neuromuscular electrical stimulation under input delays: Case study in prediction. Proceedings of the American Control Conference, 4186-4191. https://doi.org/10.1109/ACC.2014.6859113