Stability and robustness analysis for human pointing motions with acceleration under feedback delays
Document Type
Article
Publication Date
3-25-2017
Abstract
Pointer acceleration is often used in computer mice and other interfaces to increase the range and speed of pointing motions without sacrificing precision during slow movements. However, the effects of pointer acceleration are not yet well understood. We use a system perspective and feedback control to analyze the effects of pointer acceleration. We use a new pointer acceleration model connected in feedback with the vector integration to endpoint model for pointing motions. When there are no feedback delays, we prove global asymptotic stability of the closed loop system for a general class of acceleration profiles. We also prove robustness under delays and perturbations by building Lyapunov–Krasovskii functionals for delay systems, and we find state performance bounds using robust forward invariance with maximal perturbation sets. The results are relevant to designing pointing interfaces, and our simulations illustrate the good performance of our control under realistic operating conditions. Copyright © 2016 John Wiley & Sons, Ltd.
Publication Source (Journal or Book title)
International Journal of Robust and Nonlinear Control
First Page
703
Last Page
721
Recommended Citation
Varnell, P., Malisoff, M., & Zhang, F. (2017). Stability and robustness analysis for human pointing motions with acceleration under feedback delays. International Journal of Robust and Nonlinear Control, 27 (5), 703-721. https://doi.org/10.1002/rnc.3593