Document Type

Article

Publication Date

8-1-2008

Abstract

It is now well known that Hecke operators defined classically act trivially on genuine cuspforms for noncongruence subgroups of SL2 (Z). Atkin and Swinnerton-Dyer speculated the existence of p-adic Hecke operators so that the Fourier coefficients of their eigenfunctions satisfy three-term congruence recursions. In the previous two papers with the same title ([W.C. Li, L. Long, Z. Yang, On Atkin and Swinnerton-Dyer congruence relations, J. Number Theory 113 (1) (2005) 117-148] by W.C. Li, L. Long, Z. Yang and [A.O.L. Atkin, W.C. Li, L. Long, On Atkin and Swinnerton-Dyer congruence relations (2), Math. Ann. 340 (2) (2008) 335-358] by A.O.L. Atkin, W.C. Li, L. Long), the authors have studied two exceptional spaces of noncongruence cuspforms where almost all p-adic Hecke operators can be diagonalized simultaneously or semi-simultaneously. Moreover, it is shown that the l-adic Scholl representations attached to these spaces are modular in the sense that they are isomorphic, up to semisimplification, to the l-adic representations arising from classical automorphic forms. In this paper, we study an infinite family of spaces of noncongruence cuspforms (which includes the cases in [W.C. Li, L. Long, Z. Yang, On Atkin and Swinnerton-Dyer congruence relations, J. Number Theory 113 (1) (2005) 117-148; A.O.L. Atkin, W.C. Li, L. Long, On Atkin and Swinnerton-Dyer congruence relations (2), Math. Ann. 340 (2) (2008) 335-358]) under a general setting. It is shown that for each space in this family there exists a fixed basis so that the Fourier coefficients of each basis element satisfy certain weaker three-term congruence recursions. For a new case in this family, we will exhibit that the attached l-adic Scholl representations are modular and the p-adic Hecke operators can be diagonalized semi-simultaneously. © 2008 Elsevier Inc. All rights reserved.

Publication Source (Journal or Book title)

Journal of Number Theory

First Page

2413

Last Page

2429

Share

COinS